

US Census Geocoder

(Unofficial) Python Binding for the US Census Geocoder API

Version Compatibility

The US Census Geocoder is designed to be compatible with:

	Python 3.6 or higher

	Branch

	Unit Tests

	latest [https://github.com/insightindustry/census-geocdoer/tree/master]

	[image: Build Status (Travis CI)]
 [https://travis-ci.com/insightindustry/census-geocoder][image: Code Coverage Status (Codecov)]
 [https://codecov.io/gh/insightindustry/census-geocoder][image: Documentation Status (ReadTheDocs)]
 [http://census-geocoder.readthedocs.io/en/latest/?badge=latest]

	v.0.5 [https://github.com/insightindustry/census-geocoder/tree/v.0.1.0]

	[image: Build Status (Travis CI)]
 [https://travis-ci.com/insightindustry/census-geocoder][image: Code Coverage Status (Codecov)]
 [https://codecov.io/gh/insightindustry/census-geocoder][image: Documentation Status (ReadTheDocs)]
 [http://census-geocoder.readthedocs.io/en/latest/?badge=v.0.1.0]

	develop [https://github.com/insightindustry/census-geocoder/tree/develop]

	[image: Build Status (Travis CI)]
 [https://travis-ci.com/insightindustry/census-geocoder][image: Code Coverage Status (Codecov)]
 [https://codecov.io/gh/insightindustry/census-geocoder][image: Documentation Status (ReadTheDocs)]
 [http://census-geocoder.readthedocs.io/en/latest/?badge=develop]

The US Census Geocoder is a Python library that provides Python bindings for the
U.S. Census Geocoder API [https://geocoding.geo.census.gov/geocoder/]. It enables
you to use simple Python function calls to retrieve Python object representations of
geographic meta-data for the addresses or coordinates that you are searching for.

Warning

The US Census Geocoder is completely unofficial, and is in no way affiliated with
the US Government or the US Census Bureau. We strongly recommend that you do business
with them directly as needed, and simply provide this Python library as a facilitator
for your programmatic interactions with the excellent services provided by the US Census
Bureau.

Contents

	US Census Geocoder

	Installation

	Dependencies

	Why the Census Geocoder?

	Key Census Geocoder Features

	The US Census Geocoder vs Alternatives

	Hello World and Basic Usage

	1. Import the Census Geocoder

	2. Execute a Coding Request

	3. Work with the Results

	Questions and Issues

	Contributing

	Testing

	License

	Indices and tables

Installation

To install the US Census Geocoder, just execute:

$ pip install census-geocoder

Dependencies

	Validator-Collection v1.5.0 [https://github.com/insightindustry/validator-collection] or higher

	Backoff-Utils v1.0.1 [https://github.com/insightindustry/backoff-utils] or higher

	Requests v2.26 [https://docs.python-requests.org/] or higher

Why the Census Geocoder?

In fulfilling its constitutional and statutory obligations, the US Census Bureau provides
extensive data about the United States. They make this data available publicly through
their website, through their raw data files, and through their APIs. However, while their
public APIs provide great data, they are limited in both tooling and documentation. So to
help with that, we’ve created the US Census Geocoder library.

The Census Geocoder library is designed to provide a Pythonic interface for
interacting with the Census Bureau’s
Geocoder API [https://geocoding.geo.census.gov/geocoder/]. It is specifically designed
to eliminate the scaffolding needed to query the API directly, and provides for simpler
and cleaner function calls to return forward geocoding and
reverse geocoding information. Furthermore, it exposes Python object
representations of the outputs returned by the API making it easy to work with the API’s
data in your applications.

Key Census Geocoder Features

	Easy to adopt. Just install and import the library, and you can be
forward geocoding and reverse geocoding with just two lines of code.

	Extensive documentation. One of the main limitations of the Geocoder API is that its
documentation is scattered across the different datasets released by the Census Bureau,
making it hard to navigate and understand. We’ve tried to fix that.

	Location Search

	Using Geographic Coordinates (reverse geocoding)

	Using a One-line Address

	Using a Parametrized Address

	Using Batched Addresses

	Geography Search

	Using Geographic Coordinates (reverse geocoding)

	Using a One-line Address

	Using a Parametrized Address

	Using Batched Addresses

	Supports all available benchmarks, vintages, and
layers.

	Simplified syntax for indicating benchmarks, vintages, and layers.

	No more hard to interpret field names. The library uses simplified (read: human
understandable) names for location and geography properties.

The US Census Geocoder vs Alternatives

While we’re partial to the US Census Geocoder as our primary means of interacting with
the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/], there are
obviously alternatives for you to consider. Some might be better for your use specific use
cases, so here’s how we think about them:

Roll Your OwnCensus GeocodeCensusBatchGeocodergeocoder/geopy
The Census Geocoder API [https://geocoding.geo.census.gov/geocoder/] is a
straightforward RESTful API. Which means that you can just execute your own HTTP
requests against it, retrieve the JSON results, and work with the resulting data
entirely yourself. This is what I did for years, until I got tired of repeating the
same patterns over and over again, and decided to build the Census Geocoder
instead.

For a super-simple use case, probably the most expedient way to do it. But of course,
more robust use cases would require your own scaffolding with built-in retry-logic,
object representation, error handling, etc. which becomes non-trivial.

Why not use a library with batteries included?

Tip

When to use it?

In practice, I find that rolling my own solution is great when it’s an extremely
simple use case, or a one-time operation (e.g. in a Jupyter Notebook) with no
business logic to speak of. It’s a “quick-and-dirty” solution, where I’m trading
rapid implementation (yay!) for less flexibility/functionality (boo!).

Considering how easy the Census Geocoder is to use, however, I
find that I never really roll my own scaffolding when working with the
Census Geocoder API [https://geocoding.geo.census.gov/geocoder/].

The Census Geocode [https://pypi.org/project/censusgeocode/] library is fantastic, and it was what I had used before building
the Census Geocoder library. However, it has a number of significant limitations
when compared to the US Census Geocoder:

	Results are returned as-is from the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/]. This means that:

	Results are essentially JSON objects represented as dict [https://docs.python.org/3.6/library/stdtypes.html#dict],
which makes interacting with them in Python a little more cumbersome (one has to
navigate nested dict [https://docs.python.org/3.6/library/stdtypes.html#dict] objects).

	Property/field names are as in the original Census data. This means that if you
do not have the documentation handy, it is hard to intuitively understand what
the data represents.

	The library is licensed under GPL3 [https://www.gnu.org/licenses/gpl-3.0.html],
which may complicate or limit its utilization in commercial or closed-source
software operating under different (non-GPL) licenses.

	The library requires you to remember / apply a lot of the internals of the
Census Geocoder API [https://geocoding.geo.census.gov/geocoder/] as-is (e.g. benchmark vintages) which is complicated given
the API’s limited documentation.

	The library does not support custom layers, and only returns the
default set of layers for any request.

The Census Geocoder explicitly addresses all of these concerns:

	The library uses native Python classes to represent results, providing a
more pythonic syntax for interacting with those classes.

	Properties / fields have been renamed to more human-understandable names.

	The Census Geocoder is made available under the more flexible
MIT License.

	The library streamlines the configuration of benchmarks and
vintages, and provides extensive
documentation.

	The library supports any and all layers supported by the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/].

Tip

When to use it?

Census Geocode [https://pypi.org/project/censusgeocode/] has one advantage over the US Census Geocoder: It has a CLI.

I haven’t found much use for a CLI in the work I’ve done with the
Census Geocoder API [https://geocoding.geo.census.gov/geocoder/], so have not implemented it in the US Census Geocoder.
Might add it in the future, if there are enough
feature requests for it [https://github.com/insightindustry/census-geocoder/issues/1].

Given the above, it may be worth using Census Geocode [https://pypi.org/project/censusgeocode/] instead of the
Census Geocoder if you expect to be using a CLI.

The CensusBatchGeocoder [https://github.com/datadesk/python-censusbatchgeocoder] is a fantastic library produced by the team at the
Los Angeles Times Data Desk. It is specifically designed to provide a fairly pythonic
interface for doing bulk geocoding operations, with great pandas [https://pandas.pydata.org/]
serialization / de-serialization support.

However, it does have a couple of limitations:

	Stale / Unmaintained? The library does not seem to have been updated since
2017, leading me to believe that it is stale and unmaintained. There are numerous
open issues [https://github.com/datadesk/python-censusbatchgeocoder/issues]
dating back to 2020, 2018, and 2017 that have seen no activity.

	No benchmark/vintage/layer support. The library does not support the
configuration of benchmarks, vintages, or
layers.

	Limited error handling. The library has somewhat limited error handling,
judging by the issues that have been reported in the repository.

	Optimized for bulk operations. The design of the library has been optimized
for geocoding in bulk, which makes transactional one-off requests cumbersome to
execute.

The Census Geocoder is obviously fresh / maintained, and has explicitly
implemented robust error handling, and support for benchmarks,
vintages, and layers. It is also designed to support
bulk operations and transactional one-off requests.

Tip

When to use it?

CensusBatchGeocoder [https://github.com/datadesk/python-censusbatchgeocoder] has one advantage over the US Census Geocoder: It can
serialize results to a pandas [https://pandas.pydata.org/] DataFrame seamlessly and simply.

This is a useful feature, and one that I have added/pinned for the
US Census Geocoder. If there are enough requests / up-votes on the
issue [https://github.com/insightindustry/census-geocoder/issues/2], I may
extend the library with this support in the future.

Given all this, it may be worth using CensusBatchGeocoder [https://github.com/datadesk/python-censusbatchgeocoder] instead of the
US Census Geocoder if you expect to be doing a lot of bulk operations using the
default benchmark/vintage/layers.

geocoder [https://geocoder.readthedocs.io/] and geopy [https://geopy.readthedocs.io/en/latest/] are two of my favorite geocoding libraries in the Python
ecosystem. They are both inherently pythonic, elegant, easy to use, and support most
of the major geocoding providers out there with a standardized / unified API.

So at first blush, one might think: Why not just use one of these great libraries to
handle requests against the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/]?

Well, the problem is that neither geocoder [https://geocoder.readthedocs.io/] nor geopy [https://geopy.readthedocs.io/en/latest/] supports the
Census Geocoder API [https://geocoding.geo.census.gov/geocoder/] as a geocoding provider. So…you can’t just use either of them
if you specifically want US Census geocoding data.

Secondly, both the geocoder [https://geocoder.readthedocs.io/] and geopy [https://geopy.readthedocs.io/en/latest/] libraries are optimized around providing
coordinates and feature information (e.g. matched address), which the
Census Geocoder API [https://geocoding.geo.census.gov/geocoder/] results go beyond (and are not natively compatible with).

So really, if you want to interact with the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/], the
Census Geocoder library is designed to do exactly that.

Tip

When to use them?

If you only need relatively simple, coordinate/feature-focused
forward or reverse
geocoding from a different provider than the US Census Bureau, and you specifically
do not need data from the US Census Bureau.

Hello World and Basic Usage

1. Import the Census Geocoder

import census_geocoder as geocoder

2. Execute a Coding Request

Using a One-line Address

location = geocoder.location.from_address('4600 Silver Hill Rd, Washington, DC 20233')

geography = geocoder.geography.from_address('4600 Silver Hill Rd, Washington, DC 20233')

Using a Parametrized Address

location = geocoder.location.from_address(street_1 = '4600 Silver Hill Rd',
 city = 'Washington',
 state = 'DC',
 zip_code = '20233')

geography = geocoder.geography.from_address(street_1 = '4600 Silver Hill Rd',
 city = 'Washington',
 state = 'DC',
 zip_code = '20233')

Using Batched Addresses

Via a CSV File
location = geocoder.location.from_batch('my-batched-address-file.csv')

geography = geocoder.geography.from_batch('my-batched-address-file.csv')

Using Coordinates

location = geocoder.location.from_coordinates(latitude = 38.845985,
 longitude = -76.92744)

geography = geocoder.geography.from_coordinates(latitude = 38.845985,
 longitude = -76.92744)

3. Work with the Results

Work with Python Objects

location.matched_addresses[0].address

>> 4600 SILVER HILL RD, WASHINGTON, DC 20233

Questions and Issues

You can ask questions and report issues on the project’s
Github Issues Page [https://github.com/insightindustry/census-geocoder/issues]

Contributing

We welcome contributions and pull requests! For more information, please see the
Contributor Guide. And thanks to all those who’ve already
contributed:

	Chris Modzelewski (@insightindustry [https://github.com/insightindustry/])

Testing

We use TravisCI [http://travisci.org] for our build automation and
ReadTheDocs [https://readthedocs.org] for our documentation.

Detailed information about our test suite and how to run tests locally can be
found in our Testing Reference.

License

The Census Geocoder is made available under an MIT License.

Indices and tables

	Index

	Module Index

	Search Page

Quickstart: Patterns and Best Practices

	Installation

	Importing the Library

	Getting Location Data

	Getting Geographical Area Data

Installation

To install the US Census Geocoder, just execute:

$ pip install census-geocoder

Importing the Library

Importing the Census Geocoder is very straightforward. You can either import its
components precisely (see API Reference) or simply import the entire module:

Import the entire module.
import census_geocoder as geocoder

result = geocoder.location.from_address('4600 Silver Hill Rd, Washington, DC 20233')
result = geocoder.geography.from_address('4600 Silver Hill Rd, Washington, DC 20233')

Import precise components.
from census_geocoder import Location, Geography

result = Location.from_address('4600 Silver Hill Rd, Washington, DC 20233')
result = Geography.from_address('4600 Silver Hill Rd, Washington, DC 20233')

Getting Location Data

Retrieving data about canonical locations is very straightforward. You have four different
ways to get this information, depending on what information you have about the location
you want to geocode:

Single-line AddressParametrized AddressCoordinatesBatch File
import census_geocoder as geocoder

result = geocoder.location.from_address('4600 Silver Hill Rd, Washington, DC 20233')

See also

	Location.from_address()

import census_geocoder as geocoder

result = geocoder.location.from_address(street = '4600 Silver Hill Rd',
 city = 'Washington',
 state = 'DC',
 zip_code = '20233')

See also

	Location.from_address()

import census_geocoder as geocoder

result = geocoder.location.from_coordinates(longitude = -76.92744,
 latitude = 38.845985)

See also

	Location.from_coordinates()

import census_geocoder as geocoder

result = geocoder.location.from_batch(file_ = '/my-csv-file.csv')

Caution

The batch file indicated can have a maximum of 10,000 records.

Warning

While the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/] supports CSV, TXT, XLSX, and DAT formats the
Census Geocoder library only supports CSV and TXT formats so as to avoid
dependency-bloat (read: Why rely on other libraries to read XLSX format data?).

See also

	Location.from_batch()

Getting Geographical Area Data

Retrieving data about the geographic areas that contain a given location/place is just
as straightforward as getting location data. In fact, the
syntax is almost identical. Just swap out the word 'location' for 'geography'
and you’re done!

Here’s how to do it:

Single-line AddressParametrized AddressCoordinatesBatch File
import census_geocoder as geocoder

result = geocoder.geography.from_address('4600 Silver Hill Rd, Washington, DC 20233')

See also

	GeographicArea.from_address()

import census_geocoder as geocoder

result = geocoder.geography.from_address(street = '4600 Silver Hill Rd',
 city = 'Washington',
 state = 'DC',
 zip_code = '20233')

See also

	GeographicArea.from_address()

import census_geocoder as geocoder

result = geocoder.geography.from_coordinates(longitude = -76.92744,
 latitude = 38.845985)

See also

	GeographicArea.from_coordinates()

import census_geocoder as geocoder

result = geocoder.geography.from_batch(file_ = '/my-csv-file.csv')

Caution

The batch file indicated can have a maximum of 10,000 records.

Warning

While the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/] supports CSV, TXT, XLSX, and DAT formats the
Census Geocoder library only supports CSV and TXT formats so as to avoid
dependency-bloat (read: Why rely on other libraries to read XLSX format data?).

See also

	GeographicArea.from_batch()

Using the US Census Geocoder

	Introduction

	What is Geocoding?

	Why the Census Geocoder?

	Census Geocoder vs. Alternatives

	Census Geocoder Features

	Overview

	How the Census Geocoder Works

	1. Installing the Census Geocoder

	Dependencies

	2. Import the Census Geocoder

	3. Geocoding

	Getting Location Data

	Getting Geographic Area Data

	Benchmarks and Vintages

	Layers

	4. Working with Results

	Shared Methods

	Location Data

	Geographical Area Data

Introduction

What is Geocoding?

Hint

The act of determining a specific, canonical location based on some input data.

See also

	Forward Geocoding

	Reverse Geocoding

What we typically know about a specific location or geographical area is fuzzy. We might
know part of the address, or refer to the address with abbreviations, or describe a
general area, etc. It’s ambiguous, fuzzy, and unclear. That makes getting specific,
canonical, and precise data about that geographic location challenging. Which is where
the process of geocoding comes into play.

Geocoding is the process of getting a specific, precise, and canonical
determination of a geographical location (a place or geographic feature) or of a
geographical area (encompassing multiple places or geographic features).

A canonical determination of a geographical location or geographical area is defined by
the meta-data that is returned for that location/area. Things like the canonical address,
or various characteristics of the geographical area, etc. represent the “canonical”
information about that location / area.

The process of geocoding returns exactly that kind of canonical / official / unambiguous
meta-data about one or more geographical locations and areas based on a set of inputs.
Some inputs may be expected to be imprecise or partial (e.g. addresses, typically used for
forward geocoding) while others are expected to be precise but with incomplete
information (e.g. longitude and latitude coordinates used in reverse geocoding).

Why the Census Geocoder?

Geocoding is used for many thing, but the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/] in particular is meant to
provide the US Census Bureau’s canonical meta-data about identified locations and areas.
This meta-data is then typically used when executing more in-depth analysis on data
published by the US Census Bureau and other departments of the US federal and state
governments.

Because the US government uses a very complicated and overlapping hierarchy of geographic
areas, it is essential when working with US government data to start from the precise
identification of the geographic areas and locations of interest.

But using the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/] to get this information is non-trivial in its
complexity. That’s both because the API has limited documentation on the one hand, and
because its syntax is non-pythonic and requires extensive familiarity with the internals
of the (complicated) datasets that the US Census Bureau manages/publishes.

The Census Geocoder library is meant to simplify all of that, by providing an
easy-to-use, batteries-included, pythonic wrapper around the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/].

Census Geocoder vs. Alternatives

While we’re partial to the US Census Geocoder as our primary means of interacting with
the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/], there are
obviously alternatives for you to consider. Some might be better for your use specific use
cases, so here’s how we think about them:

Roll Your OwnCensus GeocodeCensusBatchGeocodergeocoder/geopy
The Census Geocoder API [https://geocoding.geo.census.gov/geocoder/] is a
straightforward RESTful API. Which means that you can just execute your own HTTP
requests against it, retrieve the JSON results, and work with the resulting data
entirely yourself. This is what I did for years, until I got tired of repeating the
same patterns over and over again, and decided to build the Census Geocoder
instead.

For a super-simple use case, probably the most expedient way to do it. But of course,
more robust use cases would require your own scaffolding with built-in retry-logic,
object representation, error handling, etc. which becomes non-trivial.

Why not use a library with batteries included?

Tip

When to use it?

In practice, I find that rolling my own solution is great when it’s an extremely
simple use case, or a one-time operation (e.g. in a Jupyter Notebook) with no
business logic to speak of. It’s a “quick-and-dirty” solution, where I’m trading
rapid implementation (yay!) for less flexibility/functionality (boo!).

Considering how easy the Census Geocoder is to use, however, I
find that I never really roll my own scaffolding when working with the
Census Geocoder API [https://geocoding.geo.census.gov/geocoder/].

The Census Geocode [https://pypi.org/project/censusgeocode/] library is fantastic, and it was what I had used before building
the Census Geocoder library. However, it has a number of significant limitations
when compared to the US Census Geocoder:

	Results are returned as-is from the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/]. This means that:

	Results are essentially JSON objects represented as dict [https://docs.python.org/3.6/library/stdtypes.html#dict],
which makes interacting with them in Python a little more cumbersome (one has to
navigate nested dict [https://docs.python.org/3.6/library/stdtypes.html#dict] objects).

	Property/field names are as in the original Census data. This means that if you
do not have the documentation handy, it is hard to intuitively understand what
the data represents.

	The library is licensed under GPL3 [https://www.gnu.org/licenses/gpl-3.0.html],
which may complicate or limit its utilization in commercial or closed-source
software operating under different (non-GPL) licenses.

	The library requires you to remember / apply a lot of the internals of the
Census Geocoder API [https://geocoding.geo.census.gov/geocoder/] as-is (e.g. benchmark vintages) which is complicated given
the API’s limited documentation.

	The library does not support custom layers, and only returns the
default set of layers for any request.

The Census Geocoder explicitly addresses all of these concerns:

	The library uses native Python classes to represent results, providing a
more pythonic syntax for interacting with those classes.

	Properties / fields have been renamed to more human-understandable names.

	The Census Geocoder is made available under the more flexible
MIT License.

	The library streamlines the configuration of benchmarks and
vintages, and provides extensive
documentation.

	The library supports any and all layers supported by the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/].

Tip

When to use it?

Census Geocode [https://pypi.org/project/censusgeocode/] has one advantage over the US Census Geocoder: It has a CLI.

I haven’t found much use for a CLI in the work I’ve done with the
Census Geocoder API [https://geocoding.geo.census.gov/geocoder/], so have not implemented it in the US Census Geocoder.
Might add it in the future, if there are enough
feature requests for it [https://github.com/insightindustry/census-geocoder/issues/1].

Given the above, it may be worth using Census Geocode [https://pypi.org/project/censusgeocode/] instead of the
Census Geocoder if you expect to be using a CLI.

The CensusBatchGeocoder [https://github.com/datadesk/python-censusbatchgeocoder] is a fantastic library produced by the team at the
Los Angeles Times Data Desk. It is specifically designed to provide a fairly pythonic
interface for doing bulk geocoding operations, with great pandas [https://pandas.pydata.org/]
serialization / de-serialization support.

However, it does have a couple of limitations:

	Stale / Unmaintained? The library does not seem to have been updated since
2017, leading me to believe that it is stale and unmaintained. There are numerous
open issues [https://github.com/datadesk/python-censusbatchgeocoder/issues]
dating back to 2020, 2018, and 2017 that have seen no activity.

	No benchmark/vintage/layer support. The library does not support the
configuration of benchmarks, vintages, or
layers.

	Limited error handling. The library has somewhat limited error handling,
judging by the issues that have been reported in the repository.

	Optimized for bulk operations. The design of the library has been optimized
for geocoding in bulk, which makes transactional one-off requests cumbersome to
execute.

The Census Geocoder is obviously fresh / maintained, and has explicitly
implemented robust error handling, and support for benchmarks,
vintages, and layers. It is also designed to support
bulk operations and transactional one-off requests.

Tip

When to use it?

CensusBatchGeocoder [https://github.com/datadesk/python-censusbatchgeocoder] has one advantage over the US Census Geocoder: It can
serialize results to a pandas [https://pandas.pydata.org/] DataFrame seamlessly and simply.

This is a useful feature, and one that I have added/pinned for the
US Census Geocoder. If there are enough requests / up-votes on the
issue [https://github.com/insightindustry/census-geocoder/issues/2], I may
extend the library with this support in the future.

Given all this, it may be worth using CensusBatchGeocoder [https://github.com/datadesk/python-censusbatchgeocoder] instead of the
US Census Geocoder if you expect to be doing a lot of bulk operations using the
default benchmark/vintage/layers.

geocoder [https://geocoder.readthedocs.io/] and geopy [https://geopy.readthedocs.io/en/latest/] are two of my favorite geocoding libraries in the Python
ecosystem. They are both inherently pythonic, elegant, easy to use, and support most
of the major geocoding providers out there with a standardized / unified API.

So at first blush, one might think: Why not just use one of these great libraries to
handle requests against the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/]?

Well, the problem is that neither geocoder [https://geocoder.readthedocs.io/] nor geopy [https://geopy.readthedocs.io/en/latest/] supports the
Census Geocoder API [https://geocoding.geo.census.gov/geocoder/] as a geocoding provider. So…you can’t just use either of them
if you specifically want US Census geocoding data.

Secondly, both the geocoder [https://geocoder.readthedocs.io/] and geopy [https://geopy.readthedocs.io/en/latest/] libraries are optimized around providing
coordinates and feature information (e.g. matched address), which the
Census Geocoder API [https://geocoding.geo.census.gov/geocoder/] results go beyond (and are not natively compatible with).

So really, if you want to interact with the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/], the
Census Geocoder library is designed to do exactly that.

Tip

When to use them?

If you only need relatively simple, coordinate/feature-focused
forward or reverse
geocoding from a different provider than the US Census Bureau, and you specifically
do not need data from the US Census Bureau.

Census Geocoder Features

	Easy to adopt. Just install and import the library, and you can be
forward geocoding and reverse geocoding with just two lines of code.

	Extensive documentation. One of the main limitations of the Geocoder API is that its
documentation is scattered across the different datasets released by the Census Bureau,
making it hard to navigate and understand. We’ve tried to fix that.

	Location Search

	Using Geographic Coordinates (reverse geocoding)

	Using a One-line Address

	Using a Parametrized Address

	Using Batched Addresses

	Geography Search

	Using Geographic Coordinates (reverse geocoding)

	Using a One-line Address

	Using a Parametrized Address

	Using Batched Addresses

	Supports all available benchmarks, vintages, and
layers.

	Simplified syntax for indicating benchmarks, vintages, and layers.

	No more hard to interpret field names. The library uses simplified (read: human
understandable) names for location and geography properties.

Overview

How the Census Geocoder Works

The Census Geocoder works with the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/] by providing a thin
Python wrapper around the APIs functionality. Rather than having to construct your own
HTTP requests against the API itself, you can instead work with Python objects and
functions the way you normally would.

In other words, the process is very straightforward:

	Install the Census Geocoder library. (see here)

	Import the geocoder. (see here)

	Geocode something - either locations or
geographies. (see here)

	Work with your geocoded locations or
geographical areas. (see
here)

And that’s it! Once you’ve done the steps above, you can easily geocode one-off requests
or batch many requests into a single transaction.

1. Installing the Census Geocoder

To install the US Census Geocoder, just execute:

$ pip install census-geocoder

Dependencies

	Validator-Collection v1.5.0 [https://github.com/insightindustry/validator-collection] or higher

	Backoff-Utils v1.0.1 [https://github.com/insightindustry/backoff-utils] or higher

	Requests v2.26 [https://docs.python-requests.org/] or higher

2. Import the Census Geocoder

Importing the Census Geocoder is very straightforward. You can either import its
components precisely (see API Reference) or simply import the entire module:

Import the entire module.
import census_geocoder as geocoder

result = geocoder.location.from_address('4600 Silver Hill Rd, Washington, DC 20233')
result = geocoder.geography.from_address('4600 Silver Hill Rd, Washington, DC 20233')

Import precise components.
from census_geocoder import Location, Geography

result = Location.from_address('4600 Silver Hill Rd, Washington, DC 20233')
result = Geography.from_address('4600 Silver Hill Rd, Washington, DC 20233')

3. Geocoding

Geocoding a location means to retrieve canonical meta-data about that location. Think of
it as getting the “official” details for a given place. Using the Census Geocoder, you
can geocode locations given:

	A single-line address (whole or partial)

	A parametrized address where you know its components parts

	A set of longitude and latitude coordinates

	A batch file in CSV or TXT format

However, the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/] provides two different sets of meta-data for any
canonical location:

	Location Data. Think of it as the canonical address for a given location/place.

	Geographic Area Data. Think of it as canonical information about the (different)
areas that contain the given location/place.

Using the Census Geocoder library you can retrieve both types of information.

Hint

When retrieving geographic area data, you also get location data.

Getting Location Data

Retrieving data about canonical locations is very straightforward. You have four different
ways to get this information, depending on what information you have about the location
you want to geocode:

Single-line AddressParametrized AddressCoordinatesBatch File
import census_geocoder as geocoder

result = geocoder.location.from_address('4600 Silver Hill Rd, Washington, DC 20233')

See also

	Location.from_address()

import census_geocoder as geocoder

result = geocoder.location.from_address(street = '4600 Silver Hill Rd',
 city = 'Washington',
 state = 'DC',
 zip_code = '20233')

See also

	Location.from_address()

import census_geocoder as geocoder

result = geocoder.location.from_coordinates(longitude = -76.92744,
 latitude = 38.845985)

See also

	Location.from_coordinates()

import census_geocoder as geocoder

result = geocoder.location.from_batch(file_ = '/my-csv-file.csv')

Caution

The batch file indicated can have a maximum of 10,000 records.

Warning

While the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/] supports CSV, TXT, XLSX, and DAT formats the
Census Geocoder library only supports CSV and TXT formats so as to avoid
dependency-bloat (read: Why rely on other libraries to read XLSX format data?).

See also

	Location.from_batch()

Getting Geographic Area Data

Retrieving data about the geographic areas that contain a given location/place is just
as straightforward as getting location data. In fact, the
syntax is almost identical. Just swap out the word 'location' for 'geography'
and you’re done!

Here’s how to do it:

Single-line AddressParametrized AddressCoordinatesBatch File
import census_geocoder as geocoder

result = geocoder.geography.from_address('4600 Silver Hill Rd, Washington, DC 20233')

See also

	GeographicArea.from_address()

import census_geocoder as geocoder

result = geocoder.geography.from_address(street = '4600 Silver Hill Rd',
 city = 'Washington',
 state = 'DC',
 zip_code = '20233')

See also

	GeographicArea.from_address()

import census_geocoder as geocoder

result = geocoder.geography.from_coordinates(longitude = -76.92744,
 latitude = 38.845985)

See also

	GeographicArea.from_coordinates()

import census_geocoder as geocoder

result = geocoder.geography.from_batch(file_ = '/my-csv-file.csv')

Caution

The batch file indicated can have a maximum of 10,000 records.

Warning

While the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/] supports CSV, TXT, XLSX, and DAT formats the
Census Geocoder library only supports CSV and TXT formats so as to avoid
dependency-bloat (read: Why rely on other libraries to read XLSX format data?).

See also

	GeographicArea.from_batch()

Benchmarks and Vintages

The data returned by the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/] is different from typical geocoding
services, in that it is time-sensitive. A geocoding service like the Google Maps API or
Here.com only cares about the current location. But the US Census Bureau’s information
is inherently linked to the statistical data collected by the US Census Bureau at
particular moments in time.

Thus, when making requests against the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/] you are always asking for
geographic location data or geographic area data as of a particular date. You might think
“geographies don’t change”, but in actuality they are constantly evolving. Congressional
districts, school districts, town lines, county lines, street names, house numbers, etc.
are all constantly evolving. And to ensure that the statistical data is tied to the
locations properly, that alignment needs to be maintained through two key concepts:

	Benchmarks

	Vintages

The benchmark is the time period when geographic information was snapshotted for
use / publication in the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/]. This is typically done twice per year,
and represents the “geographic definitions as of the time period indicated by the
benchmark”.

The vintage is the census or survey data that the geographies are linked to. Thus,
the geographic identifiers or statistical data associated with locations or geographic
areas within a given benchmark are also linked to a particular vintage of census/survey
data. Trying to use those identifiers or statistical data with a different vintage of data
may produce inaccurate results.

The Census Geocoder API [https://geocoding.geo.census.gov/geocoder/] supports a variety of benchmarks and vintages, and they are
unfortunately poorly documented and difficult to interpret. Therefore, the
Census Geocoder has been designed to streamline and simplify their usage.

Vintages are only available for a given benchmark. The table below provides guidance on
the vintages and benchmarks supported by the Census Geocoder:

	
	BENCHMARKS

	Current

	Census2020

	VINTAGES

	Current

	Census2020

	Census2020

	Census2010

	ACS2019

	

	ACS2018

	

	ACS2017

	

	Census2010

	

When using the Census Geocoder, you can supply the benchmark and
vintage directly when executing your geocoding request:

Single-line AddressParametrized AddressCoordinatesBatch File
import census_geocoder as geocoder

result = geocoder.location.from_address('4600 Silver Hill Rd, Washington, DC 20233',
 benchmark = 'Current',
 vintage = 'ACS2019')

result = geocoder.geography.from_address('4600 Silver Hill Rd, Washington, DC 20233',
 benchmark = 'Current',
 vintage = 'ACS2019')

See also

	Location.from_address()

	GeographicArea.from_address()

import census_geocoder as geocoder

result = geocoder.location.from_address(street = '4600 Silver Hill Rd',
 city = 'Washington',
 state = 'DC',
 zip_code = '20233',
 benchmark = 'Current',
 vintage = 'ACS2019')

result = geocoder.geography.from_address(street = '4600 Silver Hill Rd',
 city = 'Washington',
 state = 'DC',
 zip_code = '20233',
 benchmark = 'Current',
 vintage = 'ACS2019')

See also

	Location.from_address()

	GeographicArea.from_address()

import census_geocoder as geocoder

result = geocoder.location.from_coordinates(longitude = -76.92744,
 latitude = 38.845985,
 benchmark = 'Current',
 vintage = 'ACS2019')

result = geocoder.geography.from_coordinates(longitude = -76.92744,
 latitude = 38.845985,
 benchmark = 'Current',
 vintage = 'ACS2019')

See also

	Location.from_coordinates()

	GeographicArea.from_coordinates()

import census_geocoder as geocoder

result = geocoder.location.from_batch(file_ = '/my-csv-file.csv',
 benchmark = 'Current',
 vintage = 'ACS2019')

result = geocoder.geography.from_batch(file_ = '/my-csv-file.csv',
 benchmark = 'Current',
 vintage = 'ACS2019')

See also

	Location.from_batch()

	GeographicArea.from_batch()

Hint

Several important things to be aware of when it comes to benchmarks and vintages in the
Census Geocoder library:

Unless over-ridden by the CENSUS_GEOCODER_BENCHMARK or CENSUS_GEOCODER_VINTAGE
environment variables, the benchmark and vintage default to 'Current' and
'Current' respectively.

The benchmark and vintage are case-insensitive. This means that you can supply
'Current', 'CURRENT', or 'current' and it will all work the same.

If you want to set a different default benchmark or vintage, you can do so by setting
CENSUS_GEOCODER_BENCHMARK and CENSUS_GEOCODER_VINTAGE environment variables
to the defaults you want to use.

Layers

When working with the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/] (particularly when
getting geographic area data), you have the ability to
control which types of geographic area get returned. These types of geographic area
are called “layers”.

An example of two different “layers” might be “State” and “County”. These are two
different types of geographic area, one of which (County) may be encompassed by the other
(State). In general, geographic areas within the same layer cannot and do not overlap.
However different layers can and do overlap, where one layer (State) may contain
multiple other layers (Counties), or one layer (Metropolitan Statistical Areas) may
partially overlap multiple entities within a different layer (States).

When using the Census Geocoder you can easily specify the layers of data that you
want returned. Unless overridden by the CENSUS_GEOCODER_LAYERS environment variable,
the layers returned will always default to 'all'.

Which layers are available is ultimately determined by the vintage of the data you
are retrieving. The following represents the list of layers available in each vintage:

Current

	2010 Census Public Use Microdata Areas

	2010 Census PUMAs

	2010 PUMAs

	Census Public Use Microdata Areas

	Census PUMAs

	PUMAs

	2020 Census ZIP Code Tabulation Areas

	2020 Census ZCTAs

	Census ZCTAs

	ZCTAs

	Tribal Census Tracts

	Tribal Block Groups

	Census Tracts

	Census Block Groups

	2020 Census Blocks

	Census Blocks

	Blocks

	Unified School Districts

	Secondary School Districts

	Elementary School Districts

	Estates

	County Subdivisions

	Subbarrios

	Consolidated Cities

	Incorporated Places

	Census Designated Places

	CDPs

	Alaska Native Regional Corporations

	Tribal Subdivisions

	Federal American Indian Reservations

	Off-Reservation Trust Lands

	State American Indian Reservations

	Hawaiian Home Lands

	Alaska Native Village Statistical Areas

	Oklahoma Tribal Statistical Areas

	State Designated Tribal Stastical Areas

	Tribal Designated Statistical Areas

	American Indian Joint-Use Areas

	116th Congressional Districts

	Congressional Districts

	2018 State Legislative Districts - Upper

	State Legislative Districts - Upper

	2018 State Legislative Districts - Lower

	State Legislative Districts - Lower

	Census Divisions

	Divisions

	Census Regions

	Regions

	Combined New England City and Town Areas

	Combined NECTAs

	New England City and Town Area Divisions

	NECTA Divisions

	Metropolitan New England City and Town Areas

	Metropolitan NECTAs

	Micropolitan New England City and Town Areas

	Micropolitan NECTAs

	Combined Statistical Areas

	CSAs

	Metropolitan Divisions

	Metropolitan Statistical Areas

	Micropolitan Statistical Areas

	States

	Counties

Census2020

	Urban Growth Areas

	Tribal Census Tracts

	Tribal Block Groups

	Census Tracts

	Census Block Groups

	Block Groups

	Census Blocks

	Blocks

	Unified School Districts

	Secondary School Districts

	Elementary School Districts

	Estates

	County Subdivisions

	Subbarrios

	Consolidated Cities

	Incorporated Places

	Census Designated Places

	CDPs

	Alaska Native Regional Corporations

	Tribal Subdivisions

	Federal American Indian Reservations

	Off-Reservation Trust Lands

	State American Indian Reservations

	Hawaiian Home Lands

	Alaska Native Village Statistical Areas

	Oklahoma Tribal Statistical Areas

	State Designated Tribal Stastical Areas

	Tribal Designated Statistical Areas

	American Indian Joint-Use Areas

	116th Congressional Districts

	Congressional Districts

	2018 State Legislative Districts - Upper

	State Legislative Districts - Upper

	2018 State Legislative Districts - Lower

	State Legislative Districts - Lower

	Voting Districts

	Census Divisions

	Divisions

	Census Regions

	Regions

	Combined New England City and Town Areas

	Combined NECTAs

	New England City and Town Area Divisions

	NECTA Divisions

	Metropolitan New England City and Town Areas

	Metropolitan NECTAs

	Micropolitan New England City and Town Areas

	Micropolitan NECTAs

	Combined Statistical Areas

	CSAs

	Metropolitan Divisions

	Metropolitan Statistical Areas

	Micropolitan Statistical Areas

	States

	Counties

	Zip Code Tabulation Areas

	ZCTAs

ACS2019

	2010 Census Public Use Microdata Areas

	2010 Census PUMAs

	2010 PUMAs

	Census Public Use Microdata Areas

	Census PUMAs

	PUMAs

	2010 Census ZIP Code Tabulation Areas

	2010 Census ZCTAs

	Census ZCTAs

	ZCTAs

	Tribal Census Tracts

	Tribal Block Groups

	Census Tracts

	Census Block Groups

	Unified School Districts

	Secondary School Districts

	Elementary School Districts

	Estates

	County Subdivisions

	Subbarrios

	Consolidated Cities

	Incorporated Places

	Census Designated Places

	CDPs

	Alaska Native Regional Corporations

	Tribal Subdivisions

	Federal American Indian Reservations

	Off-Reservation Trust Lands

	State American Indian Reservations

	Hawaiian Home Lands

	Alaska Native Village Statistical Areas

	Oklahoma Tribal Statistical Areas

	State Designated Tribal Stastical Areas

	Tribal Designated Statistical Areas

	American Indian Joint-Use Areas

	116th Congressional Districts

	Congressional Districts

	2018 State Legislative Districts - Upper

	State Legislative Districts - Upper

	2018 State Legislative Districts - Lower

	State Legislative Districts - Lower

	Census Divisions

	Divisions

	Census Regions

	Regions

	2010 Census Urbanized Areas

	Census Urbanized Areas

	Urbanized Areas

	2010 Census Urban Clusters

	Census Urban Clusters

	Urban Clusters

	Combined New England City and Town Areas

	Combined NECTAs

	New England City and Town Area Divisions

	NECTA Divisions

	Metropolitan New England City and Town Areas

	Metropolitan NECTAs

	Micropolitan New England City and Town Areas

	Micropolitan NECTAs

	Combined Statistical Areas

	CSAs

	Metropolitan Divisions

	Metropolitan Statistical Areas

	Micropolitan Statistical Areas

	States

	Counties

ACS2018

	2010 Census Public Use Microdata Areas

	2010 Census PUMAs

	2010 PUMAs

	Census Public Use Microdata Areas

	Census PUMAs

	PUMAs

	2010 Census ZIP Code Tabulation Areas

	2010 Census ZCTAs

	Census ZCTAs

	ZCTAs

	Tribal Census Tracts

	Tribal Block Groups

	Census Tracts

	Census Block Groups

	Unified School Districts

	Secondary School Districts

	Elementary School Districts

	Estates

	County Subdivisions

	Subbarrios

	Consolidated Cities

	Incorporated Places

	Census Designated Places

	CDPs

	Alaska Native Regional Corporations

	Tribal Subdivisions

	Federal American Indian Reservations

	Off-Reservation Trust Lands

	State American Indian Reservations

	Hawaiian Home Lands

	Alaska Native Village Statistical Areas

	Oklahoma Tribal Statistical Areas

	State Designated Tribal Stastical Areas

	Tribal Designated Statistical Areas

	American Indian Joint-Use Areas

	116th Congressional Districts

	Congressional Districts

	2018 State Legislative Districts - Upper

	State Legislative Districts - Upper

	2018 State Legislative Districts - Lower

	State Legislative Districts - Lower

	Census Divisions

	Divisions

	Census Regions

	Regions

	2010 Census Urbanized Areas

	Census Urbanized Areas

	Urbanized Areas

	2010 Census Urban Clusters

	Census Urban Clusters

	Urban Clusters

	Combined New England City and Town Areas

	Combined NECTAs

	New England City and Town Area Divisions

	NECTA Divisions

	Metropolitan New England City and Town Areas

	Metropolitan NECTAs

	Micropolitan New England City and Town Areas

	Micropolitan NECTAs

	Combined Statistical Areas

	CSAs

	Metropolitan Divisions

	Metropolitan Statistical Areas

	Micropolitan Statistical Areas

	States

	Counties

ACS2017

	2010 Census Public Use Microdata Areas

	2010 Census PUMAs

	2010 PUMAs

	Census Public Use Microdata Areas

	Census PUMAs

	PUMAs

	2010 Census ZIP Code Tabulation Areas

	2010 Census ZCTAs

	Census ZCTAs

	ZCTAs

	Tribal Census Tracts

	Tribal Block Groups

	Census Tracts

	Census Block Groups

	Unified School Districts

	Secondary School Districts

	Elementary School Districts

	Estates

	County Subdivisions

	Subbarrios

	Consolidated Cities

	Incorporated Places

	Census Designated Places

	CDPs

	Alaska Native Regional Corporations

	Tribal Subdivisions

	Federal American Indian Reservations

	Off-Reservation Trust Lands

	State American Indian Reservations

	Hawaiian Home Lands

	Alaska Native Village Statistical Areas

	Oklahoma Tribal Statistical Areas

	State Designated Tribal Stastical Areas

	Tribal Designated Statistical Areas

	American Indian Joint-Use Areas

	115th Congressional Districts

	Congressional Districts

	2016 State Legislative Districts - Upper

	State Legislative Districts - Upper

	2016 State Legislative Districts - Lower

	State Legislative Districts - Lower

	Census Divisions

	Divisions

	Census Regions

	Regions

	2010 Census Urbanized Areas

	Census Urbanized Areas

	Urbanized Areas

	2010 Census Urban Clusters

	Census Urban Clusters

	Urban Clusters

	Combined New England City and Town Areas

	Combined NECTAs

	New England City and Town Area Divisions

	NECTA Divisions

	Metropolitan New England City and Town Areas

	Metropolitan NECTAs

	Micropolitan New England City and Town Areas

	Micropolitan NECTAs

	Combined Statistical Areas

	CSAs

	Metropolitan Divisions

	Metropolitan Statistical Areas

	Micropolitan Statistical Areas

	States

	Counties

Census2010

	Public Use Microdata Areas

	PUMAs

	Traffic Analysis Districts

	TADs

	Traffic Analysis Zones

	TAZs

	Urban Growth Areas

	ZIP Code Tabulation Areas

	Zip Code Tabulation Areas

	ZCTAs

	Tribal Census Tracts

	Tribal Block Groups

	Census Tracts

	Census Block Groups

	Census Blocks

	Blocks

	Unified School Districts

	Secondary School Districts

	Elementary School Districts

	Estates

	County Subdivisions

	Subbarrios

	Consolidated Cities

	Incorporated Places

	Census Designated Places

	CDPs

	Alaska Native Regional Corporations

	Tribal Subdivisions

	Federal American Indian Reservations

	Off-Reservation Trust Lands

	State American Indian Reservations

	Hawaiian Home Lands

	Alaska Native Village Statistical Areas

	Oklahoma Tribal Statistical Areas

	State Designated Tribal Stastical Areas

	Tribal Designated Statistical Areas

	American Indian Joint-Use Areas

	113th Congressional Districts

	111th Congressional Districts

	2012 State Legislative Districts - Upper

	2012 State Legislative Districts - Lower

	2010 State Legislative Districts - Upper

	2010 State Legislative Districts - Lower

	Voting Districts

	Census Divisions

	Divisions

	Census Regions

	Regions

	Urbanized Areas

	Urban Clusters

	Combined New England City and Town Areas

	Combined NECTAs

	New England City and Town Area Divisions

	NECTA Divisions

	Metropolitan New England City and Town Areas

	Metropolitan NECTAs

	Micropolitan New England City and Town Areas

	Micropolitan NECTAs

	Combined Statistical Areas

	CSAs

	Metropolitan Divisions

	Metropolitan Statistical Areas

	Micropolitan Statistical Areas

	States

	Counties

Note

You may notice that there are (logical) duplicate layers in the lists above, for example
“2010 Census PUMAs” and “2010 Census Public Use Microdata Areas”. This is because there
are multiple ways that users of Census data may refer to particular layers in their
work. This duplication is purely for the convenience of Census Geocoder users, since
the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/] actually uses numerical identifiers for the layers returned.

When geocoding data, you can simply supply the layers you want using the layers
keyword argument as below:

Single-line AddressParametrized AddressCoordinatesBatch File
import census_geocoder as geocoder

result = geocoder.location.from_address('4600 Silver Hill Rd, Washington, DC 20233',
 benchmark = 'Current',
 vintage = 'ACS2019',
 layers = 'Census Tracts, States, CDPs, Divisions')

result = geocoder.geography.from_address('4600 Silver Hill Rd, Washington, DC 20233',
 benchmark = 'Current',
 vintage = 'ACS2019',
 layers = 'Census Tracts, States, CDPs, Divisions')

See also

	Location.from_address()

	GeographicArea.from_address()

import census_geocoder as geocoder

result = geocoder.location.from_address(street = '4600 Silver Hill Rd',
 city = 'Washington',
 state = 'DC',
 zip_code = '20233',
 benchmark = 'Current',
 vintage = 'ACS2019',
 layers = 'Census Tracts, States, CDPs, Divisions')

result = geocoder.geography.from_address(street = '4600 Silver Hill Rd',
 city = 'Washington',
 state = 'DC',
 zip_code = '20233',
 benchmark = 'Current',
 vintage = 'ACS2019',
 layers = 'Census Tracts, States, CDPs, Divisions')

See also

	Location.from_address()

	GeographicArea.from_address()

import census_geocoder as geocoder

result = geocoder.location.from_coordinates(longitude = -76.92744,
 latitude = 38.845985,
 benchmark = 'Current',
 vintage = 'ACS2019',
 layers = 'Census Tracts, States, CDPs, Divisions')

result = geocoder.geography.from_coordinates(longitude = -76.92744,
 latitude = 38.845985,
 benchmark = 'Current',
 vintage = 'ACS2019',
 layers = 'Census Tracts, States, CDPs, Divisions')

See also

	Location.from_coordinates()

	GeographicArea.from_coordinates()

import census_geocoder as geocoder

result = geocoder.location.from_batch(file_ = '/my-csv-file.csv',
 benchmark = 'Current',
 vintage = 'ACS2019')

result = geocoder.geography.from_batch(file_ = '/my-csv-file.csv',
 benchmark = 'Current',
 vintage = 'ACS2019',
 layers = 'Census Tracts, States, CDPs, Divisions')

See also

	Location.from_batch()

	GeographicArea.from_batch()

Hint

When using the Census Geocoder to return geographic area data, you can request
multiple layers worth of data by passing them in a comma-delimited string. This will
return separate data for each layer indicated. The comma-delimited string can include
white-space for easy readability, which means that the following two values are
considered identical:

	layers = 'Census Tracts, States, CDPs, Divisions'

	layers = 'Census Tracts,States,CDPs,Divisions'

To retrieve all available layers that have data for a given location, you can submit
'all'. Unless you have set the CENSUS_GEOCODER_LAYERS environment variable to a
different value, 'all' is the default set of layers that will be returned.

Note that layer names in the Census Geocoder are case-insensitive.

4. Working with Results

Locations vs Geographical Areas?

If all geographical area data is contained within a
Location, why differentiate between
working with location data and
working with geographical area data at all?

The answer is two-fold: use case and performance. The act of geocoding is very simple
and occurs at the level of a given
Location. This process is done as soon as
the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/] has determined a canonical location (a
MatchedAddress). Typically, use
cases that need that geocoded canonical address require it to be very fast, and that’s
how the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/] has been optimized.

However, pulling geographical area data relies on first determining the canonical
location. And then, it has to pull a set of additional geographical area meta-data for
that canonical location’s geographical surroundings. That takes time, and the more
layers you request, the longer that process will take.

Therefore, both the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/] and the Census Geocoder library
differentiate between the two so that you can use the more-performant location-only
API calls when appropriate, and the less-performant but more robust geographical area
API calls as needed.

Now that you’ve geocoded some data using the Census Geocoder, you probably want to
work with your data. Well, that’s pretty easy since the Census Geocoder returns
native Python objects containing your location or geographical area data.

Shared Methods

Most of what you will do with your results is read properties from them so as to consume
or use the canonical location/geographic meta-data in your application. However, there
are a number of methods that are shared between both location data and geographic area
data that may prove helpful:

	
inspect(as_census_fields=False)

	
	Parameters

	as_census_fields (bool [https://docs.python.org/3.6/library/functions.html#bool]) – If True, returns the properties using the Census field name
rather than the Census Geocoder (user-friendly) property name. Defaults to
False.

Returns a list of the properties that are populated with values in the object.

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
to_dict()

	Serializes the data for the location/geographic area into a dict [https://docs.python.org/3.6/library/stdtypes.html#dict]
that conforms directly to the output from the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/].

	Return type

	dict [https://docs.python.org/3.6/library/stdtypes.html#dict]

	
to_json()

	Serializes the data for the location/geographic area into a str [https://docs.python.org/3.6/library/stdtypes.html#str]
containing a JSON object that conforms directly to the output from the
Census Geocoder API [https://geocoding.geo.census.gov/geocoder/].

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

Location Data

When working with location data, there are two principle sets of meta-data made available:

	Input. This is the input that was submitted to the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/], and it
includes:

	The address that you submitted.

	The benchmark requested.

	The vintage requested.

	Matched Addresses. This is a collection of addresses that the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/]
returned as the canonical addresses for your inputs.

Each matched address exposes its key meta-data, including:

	The address components in a term:parametrized <parametrized address> form.

	The address in a single-line form.

	The Tigerline identifier information for the address.

	The side of the street where the address can be found, per the Tigerline data.

See also

	Location

	MatchedAddress

Geographical Area Data

Geographical area data is always returned within the context of a
MatchedAddress instance, which itself
is always contained within a Location
instance. That matched address will have a .geographies property, which will contain a
GeographyCollection. That
.geographies property is what contains the detailed geographical area meta-data for
all geographical areas returned in response to your API request.

Each layer requested is contained in a property of the
GeographyCollection. For
example, the relevant regions would be contained in the .regions property, while
the relevant census tracts would be contained in the .tracts property.

See also

For a full list of the properties/layers that are available within a
GeographyCollection, please
see the detailed API reference:

	GeographyCollection

If a layer is not requested (or is irrelevant for a given benchmark /
vintage), then its corresponding property in the
GeographyCollection will
be None [https://docs.python.org/3.6/library/constants.html#None].

Within each layer/property, you will find a collection of
Geography instances (technically,
layer-specific sub-class instances). Each of these instances represents a geographical
area returned by the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/], and their properties will contain the
meta-data returned by that API.

Because different types of geographical area return different meta-data, there is a useful
.inspect() method that will tell
you what meta-data properties are available / have data.

The most universal properties (and the ones that are going to prove most useful when
working with other Census Bureau datasets) are:

	.geoid which contains the GEOID
(unique consolidated identifier for the geographical area)

	.name which contains the
human-readable name of the geographical area

	.geography_type which
contains a human-readable label for the instances’s geographical area/layer type

	.functional_status
which contains a human-readable indication of the geographical area’s functional status

See also

	GeographyCollection

	Geography

Geographies in the Census Geocoder

	Introduction

	Benchmarks, Vintages, and Layers

	Benchmarks and Vintages

	Layers

	Census Geographic Hierarchies Explained

	Core Hierarchy

	Secondary Hierarchies

	Places

	AIANHH Hierarchy

Introduction

We like to think that geography is simple. There’s a place, and that place has some
borders, and it’s all easy to understand. Intuitive, right?

Wrong.

Geography is actually extremely complicated, because it is by its very nature ambiguous.
The only objectively unambiguous definition of a geographic area is a pair of
longitude/latitude coordinates. When you start considering ways in which geographic areas
overlap or roll into a hierarchy, it gets even more complicated because then you need to
consider how each geographic area gets defined and overlaps.

Then, when you consider how such geographic hierarchies map to data (which itself
represents a point-in-time), it gets even more complicated. That’s because geographic
definitions change all the time. Street names change, town names change, borders shift,
etc.

And the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/] and the US Census Bureau data that it corresponds to has to
inherently account for all of these complexities. Which makes the way the
Census Geocoder API [https://geocoding.geo.census.gov/geocoder/] handles geographic areas complicated.

Benchmarks, Vintages, and Layers

Benchmarks and Vintages

The data returned by the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/] is different from typical geocoding
services, in that it is time-sensitive. A geocoding service like the Google Maps API or
Here.com only cares about the current location. But the US Census Bureau’s information
is inherently linked to the statistical data collected by the US Census Bureau at
particular moments in time.

Thus, when making requests against the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/] you are always asking for
geographic location data or geographic area data as of a particular date. You might think
“geographies don’t change”, but in actuality they are constantly evolving. Congressional
districts, school districts, town lines, county lines, street names, house numbers, etc.
are all constantly evolving. And to ensure that the statistical data is tied to the
locations properly, that alignment needs to be maintained through two key concepts:

	Benchmarks

	Vintages

The benchmark is the time period when geographic information was snapshotted for
use / publication in the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/]. This is typically done twice per year,
and represents the “geographic definitions as of the time period indicated by the
benchmark”.

The vintage is the census or survey data that the geographies are linked to. Thus,
the geographic identifiers or statistical data associated with locations or geographic
areas within a given benchmark are also linked to a particular vintage of census/survey
data. Trying to use those identifiers or statistical data with a different vintage of data
may produce inaccurate results.

The Census Geocoder API [https://geocoding.geo.census.gov/geocoder/] supports a variety of benchmarks and vintages, and they are
unfortunately poorly documented and difficult to interpret. Therefore, the
Census Geocoder has been designed to streamline and simplify their usage.

Vintages are only available for a given benchmark. The table below provides guidance on
the vintages and benchmarks supported by the Census Geocoder:

	
	BENCHMARKS

	Current

	Census2020

	VINTAGES

	Current

	Census2020

	Census2020

	Census2010

	ACS2019

	

	ACS2018

	

	ACS2017

	

	Census2010

	

When using the Census Geocoder, you can supply the benchmark and
vintage directly when executing your geocoding request:

Single-line AddressParametrized AddressCoordinatesBatch File
import census_geocoder as geocoder

result = geocoder.location.from_address('4600 Silver Hill Rd, Washington, DC 20233',
 benchmark = 'Current',
 vintage = 'ACS2019')

result = geocoder.geography.from_address('4600 Silver Hill Rd, Washington, DC 20233',
 benchmark = 'Current',
 vintage = 'ACS2019')

See also

	Location.from_address()

	GeographicArea.from_address()

import census_geocoder as geocoder

result = geocoder.location.from_address(street = '4600 Silver Hill Rd',
 city = 'Washington',
 state = 'DC',
 zip_code = '20233',
 benchmark = 'Current',
 vintage = 'ACS2019')

result = geocoder.geography.from_address(street = '4600 Silver Hill Rd',
 city = 'Washington',
 state = 'DC',
 zip_code = '20233',
 benchmark = 'Current',
 vintage = 'ACS2019')

See also

	Location.from_address()

	GeographicArea.from_address()

import census_geocoder as geocoder

result = geocoder.location.from_coordinates(longitude = -76.92744,
 latitude = 38.845985,
 benchmark = 'Current',
 vintage = 'ACS2019')

result = geocoder.geography.from_coordinates(longitude = -76.92744,
 latitude = 38.845985,
 benchmark = 'Current',
 vintage = 'ACS2019')

See also

	Location.from_coordinates()

	GeographicArea.from_coordinates()

import census_geocoder as geocoder

result = geocoder.location.from_batch(file_ = '/my-csv-file.csv',
 benchmark = 'Current',
 vintage = 'ACS2019')

result = geocoder.geography.from_batch(file_ = '/my-csv-file.csv',
 benchmark = 'Current',
 vintage = 'ACS2019')

See also

	Location.from_batch()

	GeographicArea.from_batch()

Hint

Several important things to be aware of when it comes to benchmarks and vintages in the
Census Geocoder library:

Unless over-ridden by the CENSUS_GEOCODER_BENCHMARK or CENSUS_GEOCODER_VINTAGE
environment variables, the benchmark and vintage default to 'Current' and
'Current' respectively.

The benchmark and vintage are case-insensitive. This means that you can supply
'Current', 'CURRENT', or 'current' and it will all work the same.

If you want to set a different default benchmark or vintage, you can do so by setting
CENSUS_GEOCODER_BENCHMARK and CENSUS_GEOCODER_VINTAGE environment variables
to the defaults you want to use.

Layers

When working with the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/] (particularly when
getting geographic area data), you have the ability to
control which types of geographic area get returned. These types of geographic area
are called “layers”.

An example of two different “layers” might be “State” and “County”. These are two
different types of geographic area, one of which (County) may be encompassed by the other
(State). In general, geographic areas within the same layer cannot and do not overlap.
However different layers can and do overlap, where one layer (State) may contain
multiple other layers (Counties), or one layer (Metropolitan Statistical Areas) may
partially overlap multiple entities within a different layer (States).

When using the Census Geocoder you can easily specify the layers of data that you
want returned. Unless overridden by the CENSUS_GEOCODER_LAYERS environment variable,
the layers returned will always default to 'all'.

Which layers are available is ultimately determined by the vintage of the data you
are retrieving. The following represents the list of layers available in each vintage:

Current

	2010 Census Public Use Microdata Areas

	2010 Census PUMAs

	2010 PUMAs

	Census Public Use Microdata Areas

	Census PUMAs

	PUMAs

	2020 Census ZIP Code Tabulation Areas

	2020 Census ZCTAs

	Census ZCTAs

	ZCTAs

	Tribal Census Tracts

	Tribal Block Groups

	Census Tracts

	Census Block Groups

	2020 Census Blocks

	Census Blocks

	Blocks

	Unified School Districts

	Secondary School Districts

	Elementary School Districts

	Estates

	County Subdivisions

	Subbarrios

	Consolidated Cities

	Incorporated Places

	Census Designated Places

	CDPs

	Alaska Native Regional Corporations

	Tribal Subdivisions

	Federal American Indian Reservations

	Off-Reservation Trust Lands

	State American Indian Reservations

	Hawaiian Home Lands

	Alaska Native Village Statistical Areas

	Oklahoma Tribal Statistical Areas

	State Designated Tribal Stastical Areas

	Tribal Designated Statistical Areas

	American Indian Joint-Use Areas

	116th Congressional Districts

	Congressional Districts

	2018 State Legislative Districts - Upper

	State Legislative Districts - Upper

	2018 State Legislative Districts - Lower

	State Legislative Districts - Lower

	Census Divisions

	Divisions

	Census Regions

	Regions

	Combined New England City and Town Areas

	Combined NECTAs

	New England City and Town Area Divisions

	NECTA Divisions

	Metropolitan New England City and Town Areas

	Metropolitan NECTAs

	Micropolitan New England City and Town Areas

	Micropolitan NECTAs

	Combined Statistical Areas

	CSAs

	Metropolitan Divisions

	Metropolitan Statistical Areas

	Micropolitan Statistical Areas

	States

	Counties

Census2020

	Urban Growth Areas

	Tribal Census Tracts

	Tribal Block Groups

	Census Tracts

	Census Block Groups

	Block Groups

	Census Blocks

	Blocks

	Unified School Districts

	Secondary School Districts

	Elementary School Districts

	Estates

	County Subdivisions

	Subbarrios

	Consolidated Cities

	Incorporated Places

	Census Designated Places

	CDPs

	Alaska Native Regional Corporations

	Tribal Subdivisions

	Federal American Indian Reservations

	Off-Reservation Trust Lands

	State American Indian Reservations

	Hawaiian Home Lands

	Alaska Native Village Statistical Areas

	Oklahoma Tribal Statistical Areas

	State Designated Tribal Stastical Areas

	Tribal Designated Statistical Areas

	American Indian Joint-Use Areas

	116th Congressional Districts

	Congressional Districts

	2018 State Legislative Districts - Upper

	State Legislative Districts - Upper

	2018 State Legislative Districts - Lower

	State Legislative Districts - Lower

	Voting Districts

	Census Divisions

	Divisions

	Census Regions

	Regions

	Combined New England City and Town Areas

	Combined NECTAs

	New England City and Town Area Divisions

	NECTA Divisions

	Metropolitan New England City and Town Areas

	Metropolitan NECTAs

	Micropolitan New England City and Town Areas

	Micropolitan NECTAs

	Combined Statistical Areas

	CSAs

	Metropolitan Divisions

	Metropolitan Statistical Areas

	Micropolitan Statistical Areas

	States

	Counties

	Zip Code Tabulation Areas

	ZCTAs

ACS2019

	2010 Census Public Use Microdata Areas

	2010 Census PUMAs

	2010 PUMAs

	Census Public Use Microdata Areas

	Census PUMAs

	PUMAs

	2010 Census ZIP Code Tabulation Areas

	2010 Census ZCTAs

	Census ZCTAs

	ZCTAs

	Tribal Census Tracts

	Tribal Block Groups

	Census Tracts

	Census Block Groups

	Unified School Districts

	Secondary School Districts

	Elementary School Districts

	Estates

	County Subdivisions

	Subbarrios

	Consolidated Cities

	Incorporated Places

	Census Designated Places

	CDPs

	Alaska Native Regional Corporations

	Tribal Subdivisions

	Federal American Indian Reservations

	Off-Reservation Trust Lands

	State American Indian Reservations

	Hawaiian Home Lands

	Alaska Native Village Statistical Areas

	Oklahoma Tribal Statistical Areas

	State Designated Tribal Stastical Areas

	Tribal Designated Statistical Areas

	American Indian Joint-Use Areas

	116th Congressional Districts

	Congressional Districts

	2018 State Legislative Districts - Upper

	State Legislative Districts - Upper

	2018 State Legislative Districts - Lower

	State Legislative Districts - Lower

	Census Divisions

	Divisions

	Census Regions

	Regions

	2010 Census Urbanized Areas

	Census Urbanized Areas

	Urbanized Areas

	2010 Census Urban Clusters

	Census Urban Clusters

	Urban Clusters

	Combined New England City and Town Areas

	Combined NECTAs

	New England City and Town Area Divisions

	NECTA Divisions

	Metropolitan New England City and Town Areas

	Metropolitan NECTAs

	Micropolitan New England City and Town Areas

	Micropolitan NECTAs

	Combined Statistical Areas

	CSAs

	Metropolitan Divisions

	Metropolitan Statistical Areas

	Micropolitan Statistical Areas

	States

	Counties

ACS2018

	2010 Census Public Use Microdata Areas

	2010 Census PUMAs

	2010 PUMAs

	Census Public Use Microdata Areas

	Census PUMAs

	PUMAs

	2010 Census ZIP Code Tabulation Areas

	2010 Census ZCTAs

	Census ZCTAs

	ZCTAs

	Tribal Census Tracts

	Tribal Block Groups

	Census Tracts

	Census Block Groups

	Unified School Districts

	Secondary School Districts

	Elementary School Districts

	Estates

	County Subdivisions

	Subbarrios

	Consolidated Cities

	Incorporated Places

	Census Designated Places

	CDPs

	Alaska Native Regional Corporations

	Tribal Subdivisions

	Federal American Indian Reservations

	Off-Reservation Trust Lands

	State American Indian Reservations

	Hawaiian Home Lands

	Alaska Native Village Statistical Areas

	Oklahoma Tribal Statistical Areas

	State Designated Tribal Stastical Areas

	Tribal Designated Statistical Areas

	American Indian Joint-Use Areas

	116th Congressional Districts

	Congressional Districts

	2018 State Legislative Districts - Upper

	State Legislative Districts - Upper

	2018 State Legislative Districts - Lower

	State Legislative Districts - Lower

	Census Divisions

	Divisions

	Census Regions

	Regions

	2010 Census Urbanized Areas

	Census Urbanized Areas

	Urbanized Areas

	2010 Census Urban Clusters

	Census Urban Clusters

	Urban Clusters

	Combined New England City and Town Areas

	Combined NECTAs

	New England City and Town Area Divisions

	NECTA Divisions

	Metropolitan New England City and Town Areas

	Metropolitan NECTAs

	Micropolitan New England City and Town Areas

	Micropolitan NECTAs

	Combined Statistical Areas

	CSAs

	Metropolitan Divisions

	Metropolitan Statistical Areas

	Micropolitan Statistical Areas

	States

	Counties

ACS2017

	2010 Census Public Use Microdata Areas

	2010 Census PUMAs

	2010 PUMAs

	Census Public Use Microdata Areas

	Census PUMAs

	PUMAs

	2010 Census ZIP Code Tabulation Areas

	2010 Census ZCTAs

	Census ZCTAs

	ZCTAs

	Tribal Census Tracts

	Tribal Block Groups

	Census Tracts

	Census Block Groups

	Unified School Districts

	Secondary School Districts

	Elementary School Districts

	Estates

	County Subdivisions

	Subbarrios

	Consolidated Cities

	Incorporated Places

	Census Designated Places

	CDPs

	Alaska Native Regional Corporations

	Tribal Subdivisions

	Federal American Indian Reservations

	Off-Reservation Trust Lands

	State American Indian Reservations

	Hawaiian Home Lands

	Alaska Native Village Statistical Areas

	Oklahoma Tribal Statistical Areas

	State Designated Tribal Stastical Areas

	Tribal Designated Statistical Areas

	American Indian Joint-Use Areas

	115th Congressional Districts

	Congressional Districts

	2016 State Legislative Districts - Upper

	State Legislative Districts - Upper

	2016 State Legislative Districts - Lower

	State Legislative Districts - Lower

	Census Divisions

	Divisions

	Census Regions

	Regions

	2010 Census Urbanized Areas

	Census Urbanized Areas

	Urbanized Areas

	2010 Census Urban Clusters

	Census Urban Clusters

	Urban Clusters

	Combined New England City and Town Areas

	Combined NECTAs

	New England City and Town Area Divisions

	NECTA Divisions

	Metropolitan New England City and Town Areas

	Metropolitan NECTAs

	Micropolitan New England City and Town Areas

	Micropolitan NECTAs

	Combined Statistical Areas

	CSAs

	Metropolitan Divisions

	Metropolitan Statistical Areas

	Micropolitan Statistical Areas

	States

	Counties

Census2010

	Public Use Microdata Areas

	PUMAs

	Traffic Analysis Districts

	TADs

	Traffic Analysis Zones

	TAZs

	Urban Growth Areas

	ZIP Code Tabulation Areas

	Zip Code Tabulation Areas

	ZCTAs

	Tribal Census Tracts

	Tribal Block Groups

	Census Tracts

	Census Block Groups

	Census Blocks

	Blocks

	Unified School Districts

	Secondary School Districts

	Elementary School Districts

	Estates

	County Subdivisions

	Subbarrios

	Consolidated Cities

	Incorporated Places

	Census Designated Places

	CDPs

	Alaska Native Regional Corporations

	Tribal Subdivisions

	Federal American Indian Reservations

	Off-Reservation Trust Lands

	State American Indian Reservations

	Hawaiian Home Lands

	Alaska Native Village Statistical Areas

	Oklahoma Tribal Statistical Areas

	State Designated Tribal Stastical Areas

	Tribal Designated Statistical Areas

	American Indian Joint-Use Areas

	113th Congressional Districts

	111th Congressional Districts

	2012 State Legislative Districts - Upper

	2012 State Legislative Districts - Lower

	2010 State Legislative Districts - Upper

	2010 State Legislative Districts - Lower

	Voting Districts

	Census Divisions

	Divisions

	Census Regions

	Regions

	Urbanized Areas

	Urban Clusters

	Combined New England City and Town Areas

	Combined NECTAs

	New England City and Town Area Divisions

	NECTA Divisions

	Metropolitan New England City and Town Areas

	Metropolitan NECTAs

	Micropolitan New England City and Town Areas

	Micropolitan NECTAs

	Combined Statistical Areas

	CSAs

	Metropolitan Divisions

	Metropolitan Statistical Areas

	Micropolitan Statistical Areas

	States

	Counties

Note

You may notice that there are (logical) duplicate layers in the lists above, for example
“2010 Census PUMAs” and “2010 Census Public Use Microdata Areas”. This is because there
are multiple ways that users of Census data may refer to particular layers in their
work. This duplication is purely for the convenience of Census Geocoder users, since
the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/] actually uses numerical identifiers for the layers returned.

When geocoding data, you can simply supply the layers you want using the layers
keyword argument as below:

Single-line AddressParametrized AddressCoordinatesBatch File
import census_geocoder as geocoder

result = geocoder.location.from_address('4600 Silver Hill Rd, Washington, DC 20233',
 benchmark = 'Current',
 vintage = 'ACS2019',
 layers = 'Census Tracts, States, CDPs, Divisions')

result = geocoder.geography.from_address('4600 Silver Hill Rd, Washington, DC 20233',
 benchmark = 'Current',
 vintage = 'ACS2019',
 layers = 'Census Tracts, States, CDPs, Divisions')

See also

	Location.from_address()

	GeographicArea.from_address()

import census_geocoder as geocoder

result = geocoder.location.from_address(street = '4600 Silver Hill Rd',
 city = 'Washington',
 state = 'DC',
 zip_code = '20233',
 benchmark = 'Current',
 vintage = 'ACS2019',
 layers = 'Census Tracts, States, CDPs, Divisions')

result = geocoder.geography.from_address(street = '4600 Silver Hill Rd',
 city = 'Washington',
 state = 'DC',
 zip_code = '20233',
 benchmark = 'Current',
 vintage = 'ACS2019',
 layers = 'Census Tracts, States, CDPs, Divisions')

See also

	Location.from_address()

	GeographicArea.from_address()

import census_geocoder as geocoder

result = geocoder.location.from_coordinates(longitude = -76.92744,
 latitude = 38.845985,
 benchmark = 'Current',
 vintage = 'ACS2019',
 layers = 'Census Tracts, States, CDPs, Divisions')

result = geocoder.geography.from_coordinates(longitude = -76.92744,
 latitude = 38.845985,
 benchmark = 'Current',
 vintage = 'ACS2019',
 layers = 'Census Tracts, States, CDPs, Divisions')

See also

	Location.from_coordinates()

	GeographicArea.from_coordinates()

import census_geocoder as geocoder

result = geocoder.location.from_batch(file_ = '/my-csv-file.csv',
 benchmark = 'Current',
 vintage = 'ACS2019')

result = geocoder.geography.from_batch(file_ = '/my-csv-file.csv',
 benchmark = 'Current',
 vintage = 'ACS2019',
 layers = 'Census Tracts, States, CDPs, Divisions')

See also

	Location.from_batch()

	GeographicArea.from_batch()

Hint

When using the Census Geocoder to return geographic area data, you can request
multiple layers worth of data by passing them in a comma-delimited string. This will
return separate data for each layer indicated. The comma-delimited string can include
white-space for easy readability, which means that the following two values are
considered identical:

	layers = 'Census Tracts, States, CDPs, Divisions'

	layers = 'Census Tracts,States,CDPs,Divisions'

To retrieve all available layers that have data for a given location, you can submit
'all'. Unless you have set the CENSUS_GEOCODER_LAYERS environment variable to a
different value, 'all' is the default set of layers that will be returned.

Note that layer names in the Census Geocoder are case-insensitive.

Census Geographic Hierarchies Explained

As you can tell from the list of layers above, there are lots of different types of
geographic areas supported by the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/]. These areas overlap in lots of
different ways, and the US Census Bureau’s documentation explaining this can be a little
hard to find. Therefore, I’ve tried to explain the hierarchies’ logic in straightforward
language and diagrams below.

See also

	U.S. Census Bureau Geographic Entities and Concepts (PDF)

	The Standard Hierarchy of Census Geographic Entities (PDF)

	Hierarchy of American Indian, Alaska Native, and Native Hawaiian Areas (PDF)

	The Standard Hierarchy of Census Geographic Entities in Island Areas (PDF)

Core Hierarchy

[image: Core Geographic Hierarchy]

We should start by understanding the “core” of the US Census Bureau’s hierarchy, and
working our way “up” from the smallest section. This core hierarchy by definition does
not overlap. Each area within a particular level of the hierarchy is precisely defined,
with those definitions represented in the Tigerline / Shapefile data
published by the US Census Bureau.

	
Census Block

	The single smallest element in the core hierarchy is the Census Block. This is the
most granular geographical area for which the US Census Bureau reports data, and is
the smallest geographic unit where data is available for 100% of its resident
population.

	
Block Groups

	Collections of Census Blocks. In general, the population size for block groups are
600 - 3,000.

This is the most granular geographical area for which the US Census Bureau reports
sampled data.

	
Census Tracts

	Collections of Block Groups. They are considered small, permanent, and consistent
statistical sections of their containing county.

Optimally contains 4,000 people, and range from 1,200 - 8,000 people.

	
Counties and County Equivalents

	The first administrative (government administered) area defined in the core
hierarchy. Counties have their own administrations, subordinate to the state
administration. Defined as a collection of Census Tracts.

Note

In 48 states, “counties” in the data correspond to “counties” in the their legal
administration.

In MD, MO, NV, and VA, Independent Cities are treated as counties.

In LA, parishes are treated as counties.

In Alaska, Cities, Boroughs, Municipalities, and Census Areas are treated as counties.

In Puerto Rico, municipios are treated as counties.

In American Samoa, islands and districts are treated as counties.

In the Northern Marianas, municipalities are treated as counties.

In the Virgin Islands, islands are treated as counties.

Guam and the District of Columbia are each treated as a county.

In addition to breaking down into census tracts, counties may also be broken down into:

	County Subdivisions

	Voting Districts

	
States

	The federally-constituted state (or territory, as applicable). Defined as a collection
of Counties.

In addition to breaking down into counties, states may also be broken down into:

	School Districts

	Congressional Districts

	State Legislative Districts

States also include Places, which are named entities in several types:

	Incorporated Places. Which are legally-bounded entities with some form of local
governance recognized by the state. Typically they are referred to as cities,
boroughs, towns, or villages.

	Census Designated Places. Which are statistical agglomerations of unincorporated
areas that are still identifiable by name.

	Consolidated Cities. Which are statistical agglomerations of
city-related places.

	
Divisions

	Collections of states that comprise a division within the USGIS definition
of divisions.

	
Regions

	Collection of divisions that comprise a region, per the USGIS
definition.

	
National

	Collection of all regions, that in total makes up the United States of America.

In addition to breaking down into regions, the country can also be broken down into:

	Zip Code Tabulation Areas

Hint

It may be surprising that zip code tabulation areas are not defined at the state
level. There are several important reasons for this fact:

	First, ZCTAs in the Census definition are only approximate matches for the US
Postal Service’s zip code definitions. They are statistical entities that are
composed of Census Blocks, and so may not align perfectly to building zip codes.

	Zip codes in general are federally administered by the US Postal Service, and
in some (very rare!) cases zip codes may actually straddle state lines.

The country also contains a number of standalone geographical areas, which while not
comprising 100% of the nation, may represent significant sections of the country or
its component parts. In particular, the country also includes:

	Core-based Statistical Areas. These are statistical areas that are composed of
census blocks and which are used to represent different population agglomerations.
Examples include Metropolitan Statistical Areas (which are statistical agglomerations
for a given metro area), or NECTAs (New England City and Town Areas, which are
division-specific agglomerations of New England communities).

	Urban Areas. These are statistical areas that are composed of census blocks, and
which have two types: urban clusters (which contain 2,500 - 50,000 people) and
urbanized areas (which contain 50,000 or more people).

Secondary Hierarchies

Budding off from the core hierarchy, specific
geographic entities can either be broken down or contain other secondary hierarchies.
Most secondary hierarchies are flat (i.e. they are themselves defined by a collection of
census blocks), but they may be composed of different types of
entities.

A good example of this pattern is the secondary-hierarchy concept of “School District”.
While school districts cannot be broken down further (they are defined by census blocks),
there are three types of school district that are available within the US Census data:
Unified School Districts, Secondary School Districts, and
Elementary School Districts.

Places

Another major secondary hierarchy with similar “type-based” differentiation is the concept
of “places”. There are multiple types of place, including Census Designated Places,
Incorporated Places, and Consolidated Cities. These are conceptual areas, which in
turn can all be broken down into their component census blocks.

The most important types of places are:

	Incorporated Places. Which are legally-bounded entities with some form of local
governance recognized by the state. Typically they are referred to as cities,
boroughs, towns, or villages.

	Census Designated Places. Which are statistical agglomerations of unincorporated
areas that are still identifiable by name.

AIANHH Hierarchy

Besides the core hierarchy described above, the US
Census Bureau also reports data within an American Indian, Alaska Native, and Native
Hawaiaan-oriented hierarchy.

This hierarchy is also built by rolling-up Census Blocks, however
it does not conform to either the state or county-level definitions used in the core
hierarchy. This is because tribal population groups, federally-designated American Indian
areas, tribal-designated areas, etc. may often cross state, division, or regional lines.

[image: American Indian, Alaska Native, and Native Hawaiian Hierarchy]

API Reference

	Locations

	Location

	MatchedAddress

	Geographies

	GeographyCollection

	GeographicArea

	Census Block and Related

	Census Block Group

	Tribal Census Block Group

	Census Tract

	Tribal Census Tract

	County and Related

	State

	PUMA and Related

	State Legislative District and Related

	ZCTA5 and Related

	School District-Related

	Voting District

	Metropolitan Division

	Combined Statistical Area

	Tribal Subdivision

	Census Designated Place

	Division

	Congressional District and Related

	Region

	Metropolitan Statistical Area

	Micropolitan Statistical Area

	Estate

	Subbarrio

	Consolidated City

	Incorporated Place

	Alaska Native Regional Corporation

	Federal American Indian Reservation

	Off-Reservation Trust Land

	State American Indian Reservation

	Hawaiian Home Land

	Alaska Native Village Statistical Area

	Oklahoma Tribal Statistical Areas

	State Designated Tribal Statistical Areas

	Tribal Designated Statistical Areas

	American Indian Joint-Use Areas

	CombinedNECTA and Related

	Urban-related Geographical Areas

	Traffic Analysis Zone and Related

	Census Geocoder Internals

	Base Entity

	Geographic Entity

Locations

Location

	
class Location(**kwargs)

	Represents a specific location returned by the US Census Geocoder API.

	
classmethod from_address(*args, **kwargs)

	Return data from an adddress, supplied either as a single
one-line address or a parametrized address.

	Parameters

	
	one_line (str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]) – A single-line address, e.g.
'4600 Silver Hill Rd, Washington, DC 20233'. Defaults to
None [https://docs.python.org/3.6/library/constants.html#None].

	street_1 (str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]) – A street address, e.g. '4600 Silver Hill Rd'. Defaults to
None [https://docs.python.org/3.6/library/constants.html#None].

	street_2 (str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]) – A secondary component of a street address, e.g. 'Floor 3'.
Defaults to None [https://docs.python.org/3.6/library/constants.html#None].

	street_3 (str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]) – A tertiary component of a street address, e.g. 'Apt. B'.
Defaults to None [https://docs.python.org/3.6/library/constants.html#None].

	city (str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]) – The city or town of a street address, e.g. 'Washington'.
Defaults to None [https://docs.python.org/3.6/library/constants.html#None].

	state (str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]) – The state or territory of a street address, e.g. 'DC'.
Defaults to None [https://docs.python.org/3.6/library/constants.html#None].

	zip_code (str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]) – The zip code (or zip code + 4) of a street address, e.g.
'20233'. Defaults to None [https://docs.python.org/3.6/library/constants.html#None].

	benchmark (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The name of the benchmark of data to return. The default
value is determined by the CENSUS_GEOCODER_BENCHMARK environment variable,
and if that is not set defaults to 'Current' which represents the current
default benchmark, per the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/].

Accepts the following values:

	'Current' (default)

	'Census2020'

	vintage (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The vintage of Census data for which data should be returned. The
default value is determined by the CENSUS_GEOCODER_VINTAGE environment
variable, and if that is not set defaults to 'Current' which represents the
default vintage per the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/].

Acceptable values are dependent on the benchmark specified, as per the table below:

	
	BENCHMARKS

	Current

	Census2020

	VINTAGES

	Current

	Census2020

	Census2020

	Census2010

	ACS2019

	

	ACS2018

	

	ACS2017

	

	Census2010

	

	layers (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The set of geographic layers to return for the request. The default
value is determined by the CENSUS_GEOCODER_LAYERS environment variable, and
if that is not set defaults to 'all'.

See also

	Geographies Benchmarks, Vintages, and Layers

Note

If more than one address-related parameter are supplied, this method will assume
that a parametrized address is provided.

	Returns

	A given geographic entity.

	Return type

	GeographicEntity

	Raises

	
	NoAddressError – if no address information is supplied

	EntityNotFoundError – if no geographic entity was found matching the address
supplied

	UnrecognizedBenchmarkError – if the benchmark supplied is not
recognized

	UnrecognizedVintageError – if the vintage supplied is not recognized

	
classmethod from_batch(*args, **kwargs)

	Return geographic entities for a batch collection of inputs.

	Parameters

	
	file (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The name of a file in CSV, XLS/X, DAT, or TXT format. Expects the
file to have the following columns without a header row:

	Unique ID

	Street Address

	City

	State

	Zip Code

	benchmark (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The name of the benchmark of data to return. The default
value is determined by the CENSUS_GEOCODER_BENCHMARK environment variable,
and if that is not set defaults to 'Current' which represents the current
default benchmark, per the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/].

Accepts the following values:

	'Current' (default)

	'Census2020'

	vintage (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The vintage of Census data for which data should be returned. The
default value is determined by the CENSUS_GEOCODER_VINTAGE environment
variable, and if that is not set defaults to 'Current' which represents the
default vintage per the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/].

Acceptable values are dependent on the benchmark specified, as per the table below:

	
	BENCHMARKS

	Current

	Census2020

	VINTAGES

	Current

	Census2020

	Census2020

	Census2010

	ACS2019

	

	ACS2018

	

	ACS2017

	

	Census2010

	

	layers (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The set of geographic layers to return for the request. The default
value is determined by the CENSUS_GEOCODER_LAYERS environment variable, and
if that is not set defaults to 'all'.

See also

	Geographies Benchmarks, Vintages, and Layers

	Returns

	A collection of geographic entities.

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of GeographicEntity

	Raises

	
	NoFileProvidedError – if no file_ is provided

	FileNotFoundError [https://docs.python.org/3.6/library/exceptions.html#FileNotFoundError] – if file_ does not exist on the filesystem

	BatchSizeTooLargeError – if file_ contains more than 10,000 records

	EntityNotFoundError – if no geographic entity was found matching the
address supplied

	UnrecognizedBenchmarkError – if the benchmark supplied is not
recognized

	UnrecognizedVintageError – if the vintage supplied is not recognized

	
classmethod from_coordinates(*args, **kwargs)

	Return data from a pair of geographic coordinates (longitude and latitude).

	Parameters

	
	longitude (numeric) – The longitude coordinate.

	latitude (numeric) – The latitude coordinate.

	benchmark (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The name of the benchmark of data to return. The default
value is determined by the CENSUS_GEOCODER_BENCHMARK environment variable,
and if that is not set defaults to 'Current' which represents the current
default benchmark, per the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/].

Accepts the following values:

	'Current' (default)

	'Census2020'

	vintage (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The vintage of Census data for which data should be returned. The
default value is determined by the CENSUS_GEOCODER_VINTAGE environment
variable, and if that is not set defaults to 'Current' which represents the
default vintage per the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/].

Acceptable values are dependent on the benchmark specified, as per the table below:

	
	BENCHMARKS

	Current

	Census2020

	VINTAGES

	Current

	Census2020

	Census2020

	Census2010

	ACS2019

	

	ACS2018

	

	ACS2017

	

	Census2010

	

	layers (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The set of geographic layers to return for the request. The default
value is determined by the CENSUS_GEOCODER_LAYERS environment variable, and
if that is not set defaults to 'all'.

See also

	Geographies Benchmarks, Vintages, and Layers

Note

If more than one address-related parameter are supplied, this method will assume
that a parametrized address is provided.

	Returns

	A given geographic entity.

	Return type

	GeographicEntity

	Raises

	
	NoAddressError – if no address information is supplied

	EntityNotFound – if no geographic entity was found matching the address
supplied

	UnrecognizedBenchmarkError – if the benchmark supplied is not
recognized

	UnrecognizedVintageError – if the vintage supplied is not recognized

	
classmethod from_csv_record(csv_record)

	Create an instance of the geographic entity from its CSV record.

	Parameters

	csv_record (list [https://docs.python.org/3.6/library/stdtypes.html#list] of str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The list of columns for the CSV record.

	Returns

	An instance of the geographic entity.

	Return type

	GeographicEntity

	
classmethod from_dict(as_dict)

	Create an instance of the geographic entity from its
dict [https://docs.python.org/3.6/library/stdtypes.html#dict] representation.

	Parameters

	as_dict (dict [https://docs.python.org/3.6/library/stdtypes.html#dict]) – The dict [https://docs.python.org/3.6/library/stdtypes.html#dict] representation of the geographic
entity.

	Returns

	An instance of the geographic entity.

	Return type

	GeographicEntity

	
classmethod from_json(as_json)

	Create an instance of the geographic entity from its JSON representation.

	Parameters

	as_json (str [https://docs.python.org/3.6/library/stdtypes.html#str], dict [https://docs.python.org/3.6/library/stdtypes.html#dict], or
list [https://docs.python.org/3.6/library/stdtypes.html#list]) – The JSON representation of the geographic entity.

	Returns

	An instance of the geographic entity.

	Return type

	GeographicEntity

	
inspect(as_census_fields=False)

	Produce a list of the location’s properties that have values.

	Parameters

	as_census_fields (bool [https://docs.python.org/3.6/library/functions.html#bool]) – If True, return property names as they appear in
Census databases or the output of the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/]. If False,
return properties as they are defined on the Census Geocoder objects.
Defaults to False.

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
to_dict()

	Returns a dict [https://docs.python.org/3.6/library/stdtypes.html#dict] representation of the geographic entity.

Note

The dict [https://docs.python.org/3.6/library/stdtypes.html#dict] representation matches the JSON structure for
the US Census Geocoder API. This is a not-very-pythonic
dict [https://docs.python.org/3.6/library/stdtypes.html#dict] structure, but at least this ensures idempotency.

	Returns

	dict [https://docs.python.org/3.6/library/stdtypes.html#dict] representation of the entity.

	Return type

	dict [https://docs.python.org/3.6/library/stdtypes.html#dict]

	
to_json()

	Returns a JSON representation of the geographic entity.

Note

The JSON representation matches the JSON structure for
the US Census Geocoder API. This is a not-very-pythonic
structure, but at least this ensures idempotency.

	Returns

	str [https://docs.python.org/3.6/library/stdtypes.html#str] representation of the entity.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
property benchmark

	The short-hand value of the benchmark for which this Location
was calculated.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property benchmark_description

	The description of the benchmark for which this data was returned.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
property benchmark_id

	The name of the benchmark for which this data was returned.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
property benchmark_is_default

	If True, indicates that the default benchmark has been applied.

	Return type

	bool [https://docs.python.org/3.6/library/functions.html#bool]

	
property benchmark_name

	The name of the benchmark for which this data was returned.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
property entity_type

	The type of geographic entity that the object represents. Supports either:
locations or geographies.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
property input_address

	Returns a dict [https://docs.python.org/3.6/library/stdtypes.html#dict] with the input address provided.

	Return type

	dict [https://docs.python.org/3.6/library/stdtypes.html#dict]

	
property input_city

	The city that was provided as input to get this Location.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str] or None [https://docs.python.org/3.6/library/constants.html#None]

	
property input_one_line

	The one-line address that was provided as input to get this Location.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str] or None [https://docs.python.org/3.6/library/constants.html#None]

	
property input_state

	The state that was provided as input to get this Location.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str] or None [https://docs.python.org/3.6/library/constants.html#None]

	
property input_street

	The street address that was provided as input to get this Location.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str] or None [https://docs.python.org/3.6/library/constants.html#None]

	
property input_zip_code

	The zip code that was provided as input to get this Location.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str] or None [https://docs.python.org/3.6/library/constants.html#None]

	
property matched_addresses

	Collection of addresses that have been matched to the Location.

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of MatchedAddress /
None [https://docs.python.org/3.6/library/constants.html#None]

	
property vintage

	The short-hand value of the vintage for which this Location
was calculated.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property vintage_description

	The description of the vintage for which this data was returned.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
property vintage_id

	The name of the vintage for which this data was returned.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
property vintage_is_default

	If True, indicates that the default vintage has been applied.

	Return type

	bool [https://docs.python.org/3.6/library/functions.html#bool]

	
property vintage_name

	The name of the vintage for which this data was returned.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

MatchedAddress

	
class MatchedAddress(**kwargs)

	Represents a matched address returned by the US Census GeoCoder API.

	
classmethod from_csv_record(csv_record)

	Create an instance of the geographic entity from its CSV record.

	Parameters

	csv_record (list [https://docs.python.org/3.6/library/stdtypes.html#list] of str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The list of columns for the CSV record.

	Returns

	An instance of the geographic entity.

	Return type

	GeographicEntity

	
classmethod from_dict(as_dict)

	Create an instance of the geographic entity from its
dict [https://docs.python.org/3.6/library/stdtypes.html#dict] representation.

	Parameters

	as_dict (dict [https://docs.python.org/3.6/library/stdtypes.html#dict]) – The dict [https://docs.python.org/3.6/library/stdtypes.html#dict] representation of the geographic
entity.

	Returns

	An instance of the geographic entity.

	Return type

	GeographicEntity

	
classmethod from_json(as_json)

	Create an instance of the geographic entity from its JSON representation.

	Parameters

	as_json (str [https://docs.python.org/3.6/library/stdtypes.html#str], dict [https://docs.python.org/3.6/library/stdtypes.html#dict], or
list [https://docs.python.org/3.6/library/stdtypes.html#list]) – The JSON representation of the geographic entity.

	Returns

	An instance of the geographic entity.

	Return type

	GeographicEntity

	
inspect(as_census_fields=False)

	Produce a list of the matched address properties that have values.

	Parameters

	as_census_fields (bool [https://docs.python.org/3.6/library/functions.html#bool]) – If True, return property names as they appear in
Census databases or the output of the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/]. If False,
return properties as they are defined on the Census Geocoder objects.
Defaults to False.

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
to_dict()

	Returns a dict [https://docs.python.org/3.6/library/stdtypes.html#dict] representation of the geographic entity.

Note

The dict [https://docs.python.org/3.6/library/stdtypes.html#dict] representation matches the JSON structure for
the US Census Geocoder API. This is a not-very-pythonic
dict [https://docs.python.org/3.6/library/stdtypes.html#dict] structure, but at least this ensures idempotency.

	Returns

	dict [https://docs.python.org/3.6/library/stdtypes.html#dict] representation of the entity.

	Return type

	dict [https://docs.python.org/3.6/library/stdtypes.html#dict]

	
to_json()

	Returns a JSON representation of the geographic entity.

Note

The JSON representation matches the JSON structure for
the US Census Geocoder API. This is a not-very-pythonic
structure, but at least this ensures idempotency.

	Returns

	str [https://docs.python.org/3.6/library/stdtypes.html#str] representation of the entity.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
property address

	The canonical address that was matched for the Location.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property block

	Census Block Code

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property city

	The canonical city name that was matched for the Location.

	Rdirection

	str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property county_fips_code

	County FIPS Code

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
property entity_type

	The type of geographic entity that the object represents. Supports either:
locations or geographies.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
property from_address

	The canonical lower-bound street number that was matched for the
Location.

	Rdirection

	str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property geographies

	Collection of geographical areas that this address is part of.

	Return type

	GeographyCollection / None [https://docs.python.org/3.6/library/constants.html#None]

	
property latitude

	The latitude coordinate for the location.

	Return type

	decimal

	
property longitude

	The longitude coordinate for the location.

	Return type

	decimal

	
property pre_direction

	The canonical pre-direction that was matched for the Location.

	Rdirection

	str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property pre_qualifier

	The canonical pre-qualifier that was matched for the Location.

	Rqualifier

	str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property pre_type

	The canonical pre-type that was matched for the Location.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property state

	The canonical state that was matched for the Location.

	Rdirection

	str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property state_fips_code

	State FIPS Code

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
property street

	The canonical street name that was matched for the Location.

	Rdirection

	str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property suffix_direction

	The canonical suffix-direction that was matched for the Location.

	Rdirection

	str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property suffix_qualifier

	The canonical suffix-qualifier that was matched for the Location.

	Rqualifier

	str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property suffix_type

	The canonical suffix-type that was matched for the Location.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property tigerline_id

	The TigerLine ID for the matched address.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property tigerline_side

	The TigerLine side of the street for the matched address. Accepts either ‘L’ or
‘R’.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property to_address

	The canonical upper-bound street number that was matched for the
Location.

	Rdirection

	str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property tract

	Census Tract Code

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
property zip_code

	The canonical zip code that was matched for the Location.

	Rdirection

	str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]

Geographies

GeographyCollection

	
class GeographyCollection(**kwargs)

	Collection of GeographicArea objects.

	
from_csv_record(csv_record)

	Create an instance of the geographic entity from its CSV record.

	Parameters

	csv_record (list [https://docs.python.org/3.6/library/stdtypes.html#list] of str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The list of columns for the CSV record.

	Returns

	An instance of the geographic entity.

	Return type

	GeographicEntity

	
classmethod from_dict(as_dict)

	Create an instance of the geographic entity from its
dict [https://docs.python.org/3.6/library/stdtypes.html#dict] representation.

	Parameters

	as_dict (dict [https://docs.python.org/3.6/library/stdtypes.html#dict]) – The dict [https://docs.python.org/3.6/library/stdtypes.html#dict] representation of the geographic
entity.

	Returns

	An instance of the geographic entity.

	Return type

	GeographicEntity

	
classmethod from_json(as_json)

	Create an instance of the geographic entity from its JSON representation.

	Parameters

	as_json (str [https://docs.python.org/3.6/library/stdtypes.html#str], dict [https://docs.python.org/3.6/library/stdtypes.html#dict], or
list [https://docs.python.org/3.6/library/stdtypes.html#list]) – The JSON representation of the geographic entity.

	Returns

	An instance of the geographic entity.

	Return type

	GeographicEntity

	
to_dict()

	Returns a dict [https://docs.python.org/3.6/library/stdtypes.html#dict] representation of the geographic entity.

Note

The dict [https://docs.python.org/3.6/library/stdtypes.html#dict] representation matches the JSON structure for
the US Census Geocoder API. This is a not-very-pythonic
dict [https://docs.python.org/3.6/library/stdtypes.html#dict] structure, but at least this ensures idempotency.

	Returns

	dict [https://docs.python.org/3.6/library/stdtypes.html#dict] representation of the entity.

	Return type

	dict [https://docs.python.org/3.6/library/stdtypes.html#dict]

	
to_json()

	Returns a JSON representation of the geographic entity.

Note

The JSON representation matches the JSON structure for
the US Census Geocoder API. This is a not-very-pythonic
structure, but at least this ensures idempotency.

	Returns

	str [https://docs.python.org/3.6/library/stdtypes.html#str] representation of the entity.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
property american_indian_joint_use_areas

	American Indian Joint-Use Areas

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of AIJUA

	
property anrc

	Alaska Native Regional Corporations

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of ANRC

	
property anvsa

	Alaska Native Village Statistical Area

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of ANVSA

	
property block_groups

	Census Block Groups

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of CensusBlockGroup

	
property blocks

	Census Blocks

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of CensusBlock

	
property blocks_2020

	2020 Census Blocks

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of CensusBlock_2020

	
property combined_nectas

	Combined New England City and Town Areas

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of CombinedNECTA

	
property congressional_districts_111

	111th Congressional Districts

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of CongressionalDistrict_111

	
property congressional_districts_113

	113th Congressional Districts

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of CongressionalDistrict_113

	
property congressional_districts_115

	115th Congressional Districts

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of CongressionalDistrict_115

	
property congressional_districts_116

	116th Congressional Districts

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of CongressionalDistrict_116

	
property consolidated_cities

	Consolidated Cities

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of ConsolidatedCity

	
property counties

	Census Counties

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of County

	
property county_subdivisions

	County Sub-division

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of CountySubDivision

	
property csa

	Combined Statistical Areas

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of CombinedStatisticalArea

	
property divisions

	Census Divisions

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of CensusDivision

	
property elementary_school_districts

	Elementary School Districts

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of ElementarySchoolDistrict

	
property entity_type

	The type of geographic entity that the object represents. Supports either:
locations or geographies.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
property estates

	Estates

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of Estate

	
property federal_american_indian_reservations

	Federal American Indian Reservations

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of FederalAmericanIndianReservation

	
property hawaiian_home_lands

	Hawaiian Home Lands

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of HawaiianHomeLand

	
property incorporated_places

	Incorporated Places

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of IncorporatedPlace

	
property metropolitan_divisions

	Metropolitan Divisions

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of MetropolitanDivision

	
property metrpolitan_nectas

	Metropolitan New England City and Town Areas

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of MetropolitanNECTA

	
property micropolitan_nectas

	Micropolitan New England City and Town Areas

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of MicropolitanNECTA

	
property msa

	Metropolitan Statistical Area

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of MetropolitanStatisticalArea

	
property necta_divisions

	New England City and Town Area Divisions

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of NECTADivision

	
property off_reservation_trust_lands

	Off-Reservation Trust Lands

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of OffReservationTrustLand

	
property otsa

	Oklahoma Tribal Statistical Areas

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of OTSA

	
property pumas

	Public Use Microdata Areas

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of PUMA

	
property pumas_2010

	2010 Census Public Use Microdata Areas

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of PUMA_2010

	
property regions

	Census Regions

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of CensusRegion

	
property sdtsa

	State Designated Tribal Statistical Areas

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of SDTSA

	
property secondary_school_districts

	Secondary School Districts

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of SecondarySchoolDistrict

	
property state_american_indian_reservations

	State American Indian Reservation

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of StateAmericanIndianReservation

	
property state_legislative_districts_lower

	State Legislative Districts - Lower

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of StateLegislativeDistrictLower

	
property state_legislative_districts_lower_2010

	2010 State Legislative Districts - Lower

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of StateLegislativeDistrictLower_2010

	
property state_legislative_districts_lower_2012

	2012 State Legislative Districts - Lower

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of StateLegislativeDistrictLower_2012

	
property state_legislative_districts_lower_2016

	2016 State Legislative Districts - Lower

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of StateLegislativeDistrictLower_2016

	
property state_legislative_districts_lower_2018

	2018 State Legislative Districts - Lower

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of StateLegislativeDistrictLower_2018

	
property state_legislative_districts_upper

	2010 State Legislative Districts - Upper

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of StateLegislativeDistrictUpper_2010

	
property state_legislative_districts_upper_2010

	2010 State Legislative Districts - Upper

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of StateLegislativeDistrictUpper_2010

	
property state_legislative_districts_upper_2012

	2012 State Legislative Districts - Upper

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of StateLegislativeDistrictUpper_2012

	
property state_legislative_districts_upper_2016

	2016 State Legislative Districts - Upper

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of StateLegislativeDistrictUpper_2016

	
property state_legislative_districts_upper_2018

	2018 State Legislative Districts - Upper

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of StateLegislativeDistrictUpper_2018

	
property states

	States

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of State

	
property subbarrios

	Sub-barrios

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of Subbarrio

	
property tdsa

	Tribal Designated Statistical Areas

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of TDSA

	
property tracts

	Census Tracts

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of CensusTract

	
property traffic_analysis_districts

	Traffic Analysis Districts

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of TrafficAnalysisDistrict

	
property traffic_analysis_zones

	Traffic Analysis Zones

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of TrafficAnalysisZone

	
property tribal_block_groups

	Tribal Census Block Groups

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of TribalCensusBlockGroup

	
property tribal_subdivisions

	Tribal Sub-divisions

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of TribalSubDivision

	
property tribal_tracts

	Tribal Census Tracts

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of TribalCensusTract

	
property unified_school_districts

	Unified School Districts

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of UnifiedSchoolDistrict

	
property urban_clusters

	Urban Clusters

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of UrbanCluster

	
property urban_clusters_2010

	2010 Census Urban Clusters

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of urban_clusters_2010

	
property urban_growth_areas

	Urban Growth Areas

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of UrbanGrowthArea

	
property urbanized_areas

	Urbanized Areas

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of UrbanizedArea

	
property urbanized_areas_2010

	2010 Census Urbanized Areas

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of UrbanizedArea_2010

	
property voting_districts

	Voting Districts

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of VotingDistrict

	
property zcta5

	Zip Code Tabulation Area

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of ZCTA5

	
property zcta_2010

	2010 Census ZIP Code Tabulation Areas

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of ZCTA_2010

	
property zcta_2020

	2020 Census ZIP Code Tabulation Areas

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of ZCTA_2020

GeographicArea

	
class GeographicArea(**kwargs)

	Base class for a given geography as supported by the US government.

	
classmethod from_address(*args, **kwargs)

	Return data from an adddress, supplied either as a single
one-line address or a parametrized address.

	Parameters

	
	one_line (str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]) – A single-line address, e.g.
'4600 Silver Hill Rd, Washington, DC 20233'. Defaults to
None [https://docs.python.org/3.6/library/constants.html#None].

	street_1 (str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]) – A street address, e.g. '4600 Silver Hill Rd'. Defaults to
None [https://docs.python.org/3.6/library/constants.html#None].

	street_2 (str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]) – A secondary component of a street address, e.g. 'Floor 3'.
Defaults to None [https://docs.python.org/3.6/library/constants.html#None].

	street_3 (str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]) – A tertiary component of a street address, e.g. 'Apt. B'.
Defaults to None [https://docs.python.org/3.6/library/constants.html#None].

	city (str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]) – The city or town of a street address, e.g. 'Washington'.
Defaults to None [https://docs.python.org/3.6/library/constants.html#None].

	state (str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]) – The state or territory of a street address, e.g. 'DC'.
Defaults to None [https://docs.python.org/3.6/library/constants.html#None].

	zip_code (str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]) – The zip code (or zip code + 4) of a street address, e.g.
'20233'. Defaults to None [https://docs.python.org/3.6/library/constants.html#None].

	benchmark (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The name of the benchmark of data to return. The default
value is determined by the CENSUS_GEOCODER_BENCHMARK environment variable,
and if that is not set defaults to 'Current' which represents the current
default benchmark, per the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/].

Accepts the following values:

	'Current' (default)

	'Census2020'

	vintage (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The vintage of Census data for which data should be returned. The
default value is determined by the CENSUS_GEOCODER_VINTAGE environment
variable, and if that is not set defaults to 'Current' which represents the
default vintage per the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/].

Acceptable values are dependent on the benchmark specified, as per the table below:

	
	BENCHMARKS

	Current

	Census2020

	VINTAGES

	Current

	Census2020

	Census2020

	Census2010

	ACS2019

	

	ACS2018

	

	ACS2017

	

	Census2010

	

	layers (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The set of geographic layers to return for the request. The default
value is determined by the CENSUS_GEOCODER_LAYERS environment variable, and
if that is not set defaults to 'all'.

See also

	Geographies Benchmarks, Vintages, and Layers

Note

If more than one address-related parameter are supplied, this method will assume
that a parametrized address is provided.

	Returns

	A given geographic entity.

	Return type

	GeographicEntity

	Raises

	
	NoAddressError – if no address information is supplied

	EntityNotFoundError – if no geographic entity was found matching the address
supplied

	UnrecognizedBenchmarkError – if the benchmark supplied is not
recognized

	UnrecognizedVintageError – if the vintage supplied is not recognized

	
classmethod from_batch(*args, **kwargs)

	Return geographic entities for a batch collection of inputs.

	Parameters

	
	file (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The name of a file in CSV, XLS/X, DAT, or TXT format. Expects the
file to have the following columns without a header row:

	Unique ID

	Street Address

	City

	State

	Zip Code

	benchmark (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The name of the benchmark of data to return. The default
value is determined by the CENSUS_GEOCODER_BENCHMARK environment variable,
and if that is not set defaults to 'Current' which represents the current
default benchmark, per the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/].

Accepts the following values:

	'Current' (default)

	'Census2020'

	vintage (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The vintage of Census data for which data should be returned. The
default value is determined by the CENSUS_GEOCODER_VINTAGE environment
variable, and if that is not set defaults to 'Current' which represents the
default vintage per the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/].

Acceptable values are dependent on the benchmark specified, as per the table below:

	
	BENCHMARKS

	Current

	Census2020

	VINTAGES

	Current

	Census2020

	Census2020

	Census2010

	ACS2019

	

	ACS2018

	

	ACS2017

	

	Census2010

	

	layers (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The set of geographic layers to return for the request. The default
value is determined by the CENSUS_GEOCODER_LAYERS environment variable, and
if that is not set defaults to 'all'.

See also

	Geographies Benchmarks, Vintages, and Layers

	Returns

	A collection of geographic entities.

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of GeographicEntity

	Raises

	
	NoFileProvidedError – if no file_ is provided

	FileNotFoundError [https://docs.python.org/3.6/library/exceptions.html#FileNotFoundError] – if file_ does not exist on the filesystem

	BatchSizeTooLargeError – if file_ contains more than 10,000 records

	EntityNotFoundError – if no geographic entity was found matching the
address supplied

	UnrecognizedBenchmarkError – if the benchmark supplied is not
recognized

	UnrecognizedVintageError – if the vintage supplied is not recognized

	
classmethod from_coordinates(*args, **kwargs)

	Return data from a pair of geographic coordinates (longitude and latitude).

	Parameters

	
	longitude (numeric) – The longitude coordinate.

	latitude (numeric) – The latitude coordinate.

	benchmark (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The name of the benchmark of data to return. The default
value is determined by the CENSUS_GEOCODER_BENCHMARK environment variable,
and if that is not set defaults to 'Current' which represents the current
default benchmark, per the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/].

Accepts the following values:

	'Current' (default)

	'Census2020'

	vintage (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The vintage of Census data for which data should be returned. The
default value is determined by the CENSUS_GEOCODER_VINTAGE environment
variable, and if that is not set defaults to 'Current' which represents the
default vintage per the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/].

Acceptable values are dependent on the benchmark specified, as per the table below:

	
	BENCHMARKS

	Current

	Census2020

	VINTAGES

	Current

	Census2020

	Census2020

	Census2010

	ACS2019

	

	ACS2018

	

	ACS2017

	

	Census2010

	

	layers (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The set of geographic layers to return for the request. The default
value is determined by the CENSUS_GEOCODER_LAYERS environment variable, and
if that is not set defaults to 'all'.

See also

	Geographies Benchmarks, Vintages, and Layers

Note

If more than one address-related parameter are supplied, this method will assume
that a parametrized address is provided.

	Returns

	A given geographic entity.

	Return type

	GeographicEntity

	Raises

	
	NoAddressError – if no address information is supplied

	EntityNotFound – if no geographic entity was found matching the address
supplied

	UnrecognizedBenchmarkError – if the benchmark supplied is not
recognized

	UnrecognizedVintageError – if the vintage supplied is not recognized

	
classmethod from_csv_record(csv_record)

	Create an instance of the geographic entity from its CSV record.

	Parameters

	csv_record (list [https://docs.python.org/3.6/library/stdtypes.html#list] of str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The list of columns for the CSV record.

	Returns

	An instance of the geographic entity.

	Return type

	Geography

	
classmethod from_dict(as_dict)

	Create an instance of the geographic entity from its
dict [https://docs.python.org/3.6/library/stdtypes.html#dict] representation.

	Parameters

	as_dict (dict [https://docs.python.org/3.6/library/stdtypes.html#dict]) – The dict [https://docs.python.org/3.6/library/stdtypes.html#dict] representation of the geographic
entity.

	Returns

	An instance of the geographic entity.

	Return type

	GeographicEntity

	
classmethod from_json(as_json)

	Create an instance of the geographic entity from its JSON representation.

	Parameters

	as_json (str [https://docs.python.org/3.6/library/stdtypes.html#str], dict [https://docs.python.org/3.6/library/stdtypes.html#dict], or
list [https://docs.python.org/3.6/library/stdtypes.html#list]) – The JSON representation of the geographic entity.

	Returns

	An instance of the geographic entity.

	Return type

	GeographicEntity

	
inspect(as_census_fields=False)

	Produce a list of the geographic area’s properties that have values.

	Parameters

	as_census_fields (bool [https://docs.python.org/3.6/library/functions.html#bool]) – If True, return property names as they appear in
Census databases or the output of the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/]. If False,
return properties as they are defined on the Census Geocoder objects.
Defaults to False.

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
to_dict()

	Returns a dict [https://docs.python.org/3.6/library/stdtypes.html#dict] representation of the geographic entity.

Note

The dict [https://docs.python.org/3.6/library/stdtypes.html#dict] representation matches the JSON structure for
the US Census Geocoder API. This is a not-very-pythonic
dict [https://docs.python.org/3.6/library/stdtypes.html#dict] structure, but at least this ensures idempotency.

Warning

Note that certain geography types only use a subset of the properties returned.
Unused or unavailable properties will be returned as None [https://docs.python.org/3.6/library/constants.html#None]
which will be converted to null if serialized to JSON.

	Returns

	dict [https://docs.python.org/3.6/library/stdtypes.html#dict] representation of the entity.

	Return type

	dict [https://docs.python.org/3.6/library/stdtypes.html#dict]

	
to_json()

	Returns a JSON representation of the geographic entity.

Note

The JSON representation matches the JSON structure for
the US Census Geocoder API. This is a not-very-pythonic
structure, but at least this ensures idempotency.

	Returns

	str [https://docs.python.org/3.6/library/stdtypes.html#str] representation of the entity.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
property basename

	The human-readable basename of the geography.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property block

	Census Block Code

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property block_group

	Census Block Group Code

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
property cbsa

	Census CBSA Code

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property cbsa_pci

	CBSA Principal City Indciator

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property congressional_session_code

	Congressional Session Code

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property county_cc

	County Class Code

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property county_fips_code

	County FIPS Code

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
property county_ns

	County ANSI Feature Code

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property csa

	Census CSA Code

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property division_fips_code

	State FIPS Code

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
property entity_type

	The type of geographic entity that the object represents. Supports either:
locations or geographies.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
property funcstat

	The functional status code of the geography.

See also

	Functional Status Codes and Definitions [https://www.census.gov/library/reference/code-lists/functional-status-codes.html]

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
property functional_status

	The functional status of the geography.

See also

	Functional Status Codes and Definitions [https://www.census.gov/library/reference/code-lists/functional-status-codes.html]

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
property geography_type

	Returns the Geography Type for the given geography.

	
property geoid

	The Geographic Identifier.

Note

Fully concatenated geographic code (State FIPS and component numbers).

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property high_school_grade

	School District - Highest Grade

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property is_principal_city

	If True, indicates that the geography is the principal city of its
surrounding entity.

	Return type

	bool [https://docs.python.org/3.6/library/functions.html#bool]

	
property land_area

	The area of the geography that is on solid land, expressed in square meters.

	Return type

	int [https://docs.python.org/3.6/library/functions.html#int] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property latitude

	The centroid latitude for the geographic area.

	Return type

	Decimal [https://docs.python.org/3.6/library/decimal.html#decimal.Decimal] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property latitude_internal_point

	The internal point latitude for the geographic area.

	Return type

	Decimal [https://docs.python.org/3.6/library/decimal.html#decimal.Decimal] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property legal_statistical_area

	Legal/Statistical Area Descriptor

See also

	Legal/Statistical Area Descriptor Codes and Definitions [https://www.census.gov/library/reference/code-lists/legal-status-codes.html]

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property legislative_session_year

	Legislative Session Year (LSY)

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property longitude

	The centroid longitude for the geographic area.

	Return type

	Decimal [https://docs.python.org/3.6/library/decimal.html#decimal.Decimal] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property longitude_internal_point

	The internal point longitude for the geographic area.

	Return type

	Decimal [https://docs.python.org/3.6/library/decimal.html#decimal.Decimal] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property low_school_grade

	School District - Lowest Grade

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property lsad

	Legal/Statisical Area Descriptor (LSAD) Code

See also

	Legal/Statistical Area Descriptor Codes and Definitions [https://www.census.gov/library/reference/code-lists/legal-status-codes.html]

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property lsad_category

	Indicates the category of the LSAD for the geography. Returns either:

	Unspecified

	Prefix

	Suffix

	Balance

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
property name

	The human-readable name of the geography.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property necta_pci

	NECTA Principal City Indciator

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property object_id

	The Object Identifier.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property oid

	The OID.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property place

	Census Place Code

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property place_cc

	Place Class Code

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property place_ns

	Place ANSI Feature Code

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property region_fips_code

	Region FIPS Code

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
property school_district_type

	School District Type

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property state_abbreviation

	State Abbreviation

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
property state_fips_code

	State FIPS Code

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
property state_ns

	State ANSI Feature Code

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
property tract

	Census Tract Code

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
property water_area

	The area of the geography that is covered in water, expressed in square meters.

Note

Water area calculations in this table include only perennial water. All other
water (intermittent, glacier, and marsh/swamp) is included in this table as part
of land_area calculations.

	Return type

	int [https://docs.python.org/3.6/library/functions.html#int] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property zcta5

	ZCTA-5 Zip Code Value

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]

	
property zcta5_cc

	ZCTA5 Class Code

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]

Census Block and Related

	
class CensusBlock(**kwargs)

	Census Block

	
class CensusBlock_2020(**kwargs)

	2020 Census Blocks

Census Block Group

	
class CensusBlockGroup(**kwargs)

	Census Block Group

Tribal Census Block Group

	
class TribalCensusBlockGroup(**kwargs)

	Tribal Census Block Group

Census Tract

	
class CensusTract(**kwargs)

	Census Tract

Tribal Census Tract

	
class TribalCensusTract(**kwargs)

	Tribal Census Tract

County and Related

	
class County(**kwargs)

	

	
class CountySubDivision(**kwargs)

	County Sub-division

State

	
class State(**kwargs)

	

PUMA and Related

	
class PUMA(**kwargs)

	Public Use Microdata Area

	
class PUMA_2010(**kwargs)

	2010 Census Public Use Microdata Area

State Legislative District and Related

	
class StateLegislativeDistrictLower(**kwargs)

	State Legislative District - Lower

	
class StateLegislativeDistrictLower_2010(**kwargs)

	2010 State Legislative District - Lower

	
class StateLegislativeDistrictLower_2012(**kwargs)

	2012 State Legislative District - Lower

	
class StateLegislativeDistrictLower_2016(**kwargs)

	2016 State Legislative District - Lower

	
class StateLegislativeDistrictLower_2018(**kwargs)

	2018 State Legislative District - Lower

	
class StateLegislativeDistrictUpper(**kwargs)

	State Legislative District - Upper

	
class StateLegislativeDistrictUpper_2010(**kwargs)

	2010 State Legislative District - Upper

	
class StateLegislativeDistrictUpper_2012(**kwargs)

	2012 State Legislative District - Upper

	
class StateLegislativeDistrictUpper_2016(**kwargs)

	2016 State Legislative District - Upper

	
class StateLegislativeDistrictUpper_2018(**kwargs)

	2018 State Legislative District - Upper

ZCTA5 and Related

	
class ZCTA5(**kwargs)

	

	
class ZCTA_2010(**kwargs)

	2010 Zip Code Tabulation Areas

	
class ZCTA_2020(**kwargs)

	2020 Zip Code Tabulation Areas

School District-Related

	
class UnifiedSchoolDistrict(**kwargs)

	Unified School District

	
class SecondarySchoolDistrict(**kwargs)

	Secondary School District

	
class ElementarySchoolDistrict(**kwargs)

	Elementary School District

Voting District

	
class VotingDistrict(**kwargs)

	Voting District

Metropolitan Division

	
class MetropolitanDivision(**kwargs)

	Metropolitan Division

Combined Statistical Area

	
class CombinedStatisticalArea(**kwargs)

	Combined Statistical Area

Tribal Subdivision

	
class TribalSubDivision(**kwargs)

	Tribal Sub-division

Census Designated Place

	
class CensusDesignatedPlace(**kwargs)

	Census Designated Place

Division

	
class CensusDivision(**kwargs)

	Census Division

Congressional District and Related

	
class CongressionalDistrict(**kwargs)

	Congressional District

	
class CongressionalDistrict_116(**kwargs)

	116th Congressional District

	
class CongressionalDistrict_115(**kwargs)

	115th Congressional District

	
class CongressionalDistrict_113(**kwargs)

	113th Congressional District

	
class CongressionalDistrict_111(**kwargs)

	111th Congressional District

Region

	
class CensusRegion(**kwargs)

	Census Region

Metropolitan Statistical Area

	
class MetropolitanStatisticalArea(**kwargs)

	Metropolitan Statistical Area

Micropolitan Statistical Area

	
class MicropolitanStatisticalArea(**kwargs)

	Micropolitan Statistical Area

Estate

	
class Estate(**kwargs)

	

Subbarrio

	
class Subbarrio(**kwargs)

	

Consolidated City

	
class ConsolidatedCity(**kwargs)

	Consolidated City

Incorporated Place

	
class IncorporatedPlace(**kwargs)

	Incorporated Place

Alaska Native Regional Corporation

	
class ANRC(**kwargs)

	Alaska Native Regional Corporation

Federal American Indian Reservation

	
class FederalAmericanIndianReservation(**kwargs)

	Federal American Indian Reservation

Off-Reservation Trust Land

	
class OffReservationTrustLand(**kwargs)

	Off-Reservation Trust Land

State American Indian Reservation

	
class StateAmericanIndianReservation(**kwargs)

	State American Indian Reservation

Hawaiian Home Land

	
class HawaiianHomeLand(**kwargs)

	Hawaiian Home Land

Alaska Native Village Statistical Area

	
class ANVSA(**kwargs)

	Alaska Native Village Statistical Area

Oklahoma Tribal Statistical Areas

	
class OTSA(**kwargs)

	Oklahoma Tribal Statistical Area

State Designated Tribal Statistical Areas

	
class SDTSA(**kwargs)

	State Designated Tribal Statistical Areas

Tribal Designated Statistical Areas

	
class TDSA(**kwargs)

	Tribal Designated Statistical Area

American Indian Joint-Use Areas

	
class AIJUA(**kwargs)

	American Indian Joint-Use Area

CombinedNECTA and Related

	
class CombinedNECTA(**kwargs)

	Combined New England City and Town Area

	
class NECTADivision(**kwargs)

	New England City and Town Area Division

	
class MetropolitanNECTA(**kwargs)

	Metropolitan New England City and Town Area

	
class MicropolitanNECTA(**kwargs)

	Micropolitan New England City and Town Area

Urban-related Geographical Areas

	
class UrbanGrowthArea(**kwargs)

	Urban Growth Area

	
class UrbanizedArea(**kwargs)

	Urbanized Area

	
class UrbanizedArea_2010(**kwargs)

	2010 Census Urbanized Area

	
class UrbanCluster(**kwargs)

	Urban Cluster

	
class UrbanCluster_2010(**kwargs)

	2010 Census Urban Cluster

Traffic Analysis Zone and Related

	
class TrafficAnalysisZone(**kwargs)

	Traffic Analysis Zone

	
class TrafficAnalysisDistrict(**kwargs)

	Traffic Analysis District

Census Geocoder Internals

Base Entity

	
class BaseEntity

	Abstract base clase for geographic entities that may or may not be supported by the
API.

	
abstract classmethod from_csv_record(csv_record)

	Create an instance of the geographic entity from its CSV record.

	Parameters

	csv_record (list [https://docs.python.org/3.6/library/stdtypes.html#list] of str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The list of columns for the CSV record.

	Returns

	An instance of the geographic entity.

	Return type

	GeographicEntity

	
abstract classmethod from_dict(as_dict)

	Create an instance of the geographic entity from its
dict [https://docs.python.org/3.6/library/stdtypes.html#dict] representation.

	Parameters

	as_dict (dict [https://docs.python.org/3.6/library/stdtypes.html#dict]) – The dict [https://docs.python.org/3.6/library/stdtypes.html#dict] representation of the geographic
entity.

	Returns

	An instance of the geographic entity.

	Return type

	GeographicEntity

	
classmethod from_json(as_json)

	Create an instance of the geographic entity from its JSON representation.

	Parameters

	as_json (str [https://docs.python.org/3.6/library/stdtypes.html#str], dict [https://docs.python.org/3.6/library/stdtypes.html#dict], or
list [https://docs.python.org/3.6/library/stdtypes.html#list]) – The JSON representation of the geographic entity.

	Returns

	An instance of the geographic entity.

	Return type

	GeographicEntity

	
abstract to_dict()

	Returns a dict [https://docs.python.org/3.6/library/stdtypes.html#dict] representation of the geographic entity.

Note

The dict [https://docs.python.org/3.6/library/stdtypes.html#dict] representation matches the JSON structure for
the US Census Geocoder API. This is a not-very-pythonic
dict [https://docs.python.org/3.6/library/stdtypes.html#dict] structure, but at least this ensures idempotency.

	Returns

	dict [https://docs.python.org/3.6/library/stdtypes.html#dict] representation of the entity.

	Return type

	dict [https://docs.python.org/3.6/library/stdtypes.html#dict]

	
to_json()

	Returns a JSON representation of the geographic entity.

Note

The JSON representation matches the JSON structure for
the US Census Geocoder API. This is a not-very-pythonic
structure, but at least this ensures idempotency.

	Returns

	str [https://docs.python.org/3.6/library/stdtypes.html#str] representation of the entity.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
abstract property entity_type

	The type of geographic entity that the object represents. Supports either:
locations or geographies.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

Geographic Entity

	
class GeographicEntity

	Abstract base class for geographic entities that are supported by the API.

	
classmethod from_address(*args, **kwargs)

	Return data from an adddress, supplied either as a single
one-line address or a parametrized address.

	Parameters

	
	one_line (str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]) – A single-line address, e.g.
'4600 Silver Hill Rd, Washington, DC 20233'. Defaults to
None [https://docs.python.org/3.6/library/constants.html#None].

	street_1 (str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]) – A street address, e.g. '4600 Silver Hill Rd'. Defaults to
None [https://docs.python.org/3.6/library/constants.html#None].

	street_2 (str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]) – A secondary component of a street address, e.g. 'Floor 3'.
Defaults to None [https://docs.python.org/3.6/library/constants.html#None].

	street_3 (str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]) – A tertiary component of a street address, e.g. 'Apt. B'.
Defaults to None [https://docs.python.org/3.6/library/constants.html#None].

	city (str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]) – The city or town of a street address, e.g. 'Washington'.
Defaults to None [https://docs.python.org/3.6/library/constants.html#None].

	state (str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]) – The state or territory of a street address, e.g. 'DC'.
Defaults to None [https://docs.python.org/3.6/library/constants.html#None].

	zip_code (str [https://docs.python.org/3.6/library/stdtypes.html#str] / None [https://docs.python.org/3.6/library/constants.html#None]) – The zip code (or zip code + 4) of a street address, e.g.
'20233'. Defaults to None [https://docs.python.org/3.6/library/constants.html#None].

	benchmark (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The name of the benchmark of data to return. The default
value is determined by the CENSUS_GEOCODER_BENCHMARK environment variable,
and if that is not set defaults to 'Current' which represents the current
default benchmark, per the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/].

Accepts the following values:

	'Current' (default)

	'Census2020'

	vintage (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The vintage of Census data for which data should be returned. The
default value is determined by the CENSUS_GEOCODER_VINTAGE environment
variable, and if that is not set defaults to 'Current' which represents the
default vintage per the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/].

Acceptable values are dependent on the benchmark specified, as per the table below:

	
	BENCHMARKS

	Current

	Census2020

	VINTAGES

	Current

	Census2020

	Census2020

	Census2010

	ACS2019

	

	ACS2018

	

	ACS2017

	

	Census2010

	

	layers (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The set of geographic layers to return for the request. The default
value is determined by the CENSUS_GEOCODER_LAYERS environment variable, and
if that is not set defaults to 'all'.

See also

	Geographies Benchmarks, Vintages, and Layers

Note

If more than one address-related parameter are supplied, this method will assume
that a parametrized address is provided.

	Returns

	A given geographic entity.

	Return type

	GeographicEntity

	Raises

	
	NoAddressError – if no address information is supplied

	EntityNotFoundError – if no geographic entity was found matching the address
supplied

	UnrecognizedBenchmarkError – if the benchmark supplied is not
recognized

	UnrecognizedVintageError – if the vintage supplied is not recognized

	
classmethod from_batch(*args, **kwargs)

	Return geographic entities for a batch collection of inputs.

	Parameters

	
	file (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The name of a file in CSV, XLS/X, DAT, or TXT format. Expects the
file to have the following columns without a header row:

	Unique ID

	Street Address

	City

	State

	Zip Code

	benchmark (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The name of the benchmark of data to return. The default
value is determined by the CENSUS_GEOCODER_BENCHMARK environment variable,
and if that is not set defaults to 'Current' which represents the current
default benchmark, per the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/].

Accepts the following values:

	'Current' (default)

	'Census2020'

	vintage (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The vintage of Census data for which data should be returned. The
default value is determined by the CENSUS_GEOCODER_VINTAGE environment
variable, and if that is not set defaults to 'Current' which represents the
default vintage per the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/].

Acceptable values are dependent on the benchmark specified, as per the table below:

	
	BENCHMARKS

	Current

	Census2020

	VINTAGES

	Current

	Census2020

	Census2020

	Census2010

	ACS2019

	

	ACS2018

	

	ACS2017

	

	Census2010

	

	layers (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The set of geographic layers to return for the request. The default
value is determined by the CENSUS_GEOCODER_LAYERS environment variable, and
if that is not set defaults to 'all'.

See also

	Geographies Benchmarks, Vintages, and Layers

	Returns

	A collection of geographic entities.

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of GeographicEntity

	Raises

	
	NoFileProvidedError – if no file_ is provided

	FileNotFoundError [https://docs.python.org/3.6/library/exceptions.html#FileNotFoundError] – if file_ does not exist on the filesystem

	BatchSizeTooLargeError – if file_ contains more than 10,000 records

	EntityNotFoundError – if no geographic entity was found matching the
address supplied

	UnrecognizedBenchmarkError – if the benchmark supplied is not
recognized

	UnrecognizedVintageError – if the vintage supplied is not recognized

	
classmethod from_coordinates(*args, **kwargs)

	Return data from a pair of geographic coordinates (longitude and latitude).

	Parameters

	
	longitude (numeric) – The longitude coordinate.

	latitude (numeric) – The latitude coordinate.

	benchmark (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The name of the benchmark of data to return. The default
value is determined by the CENSUS_GEOCODER_BENCHMARK environment variable,
and if that is not set defaults to 'Current' which represents the current
default benchmark, per the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/].

Accepts the following values:

	'Current' (default)

	'Census2020'

	vintage (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The vintage of Census data for which data should be returned. The
default value is determined by the CENSUS_GEOCODER_VINTAGE environment
variable, and if that is not set defaults to 'Current' which represents the
default vintage per the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/].

Acceptable values are dependent on the benchmark specified, as per the table below:

	
	BENCHMARKS

	Current

	Census2020

	VINTAGES

	Current

	Census2020

	Census2020

	Census2010

	ACS2019

	

	ACS2018

	

	ACS2017

	

	Census2010

	

	layers (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The set of geographic layers to return for the request. The default
value is determined by the CENSUS_GEOCODER_LAYERS environment variable, and
if that is not set defaults to 'all'.

See also

	Geographies Benchmarks, Vintages, and Layers

Note

If more than one address-related parameter are supplied, this method will assume
that a parametrized address is provided.

	Returns

	A given geographic entity.

	Return type

	GeographicEntity

	Raises

	
	NoAddressError – if no address information is supplied

	EntityNotFound – if no geographic entity was found matching the address
supplied

	UnrecognizedBenchmarkError – if the benchmark supplied is not
recognized

	UnrecognizedVintageError – if the vintage supplied is not recognized

	
abstract classmethod from_csv_record(csv_record)

	Create an instance of the geographic entity from its CSV record.

	Parameters

	csv_record (list [https://docs.python.org/3.6/library/stdtypes.html#list] of str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The list of columns for the CSV record.

	Returns

	An instance of the geographic entity.

	Return type

	GeographicEntity

	
abstract classmethod from_dict(as_dict)

	Create an instance of the geographic entity from its
dict [https://docs.python.org/3.6/library/stdtypes.html#dict] representation.

	Parameters

	as_dict (dict [https://docs.python.org/3.6/library/stdtypes.html#dict]) – The dict [https://docs.python.org/3.6/library/stdtypes.html#dict] representation of the geographic
entity.

	Returns

	An instance of the geographic entity.

	Return type

	GeographicEntity

	
classmethod from_json(as_json)

	Create an instance of the geographic entity from its JSON representation.

	Parameters

	as_json (str [https://docs.python.org/3.6/library/stdtypes.html#str], dict [https://docs.python.org/3.6/library/stdtypes.html#dict], or
list [https://docs.python.org/3.6/library/stdtypes.html#list]) – The JSON representation of the geographic entity.

	Returns

	An instance of the geographic entity.

	Return type

	GeographicEntity

	
inspect(as_census_fields=False)

	Produce a list of the entity’s properties that have values.

	Parameters

	as_census_fields (bool [https://docs.python.org/3.6/library/functions.html#bool]) – If True, return property names as they appear in
Census databases or the output of the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/]. If False,
return properties as they are defined on the Census Geocoder objects.
Defaults to False.

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list] of str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
abstract to_dict()

	Returns a dict [https://docs.python.org/3.6/library/stdtypes.html#dict] representation of the geographic entity.

Note

The dict [https://docs.python.org/3.6/library/stdtypes.html#dict] representation matches the JSON structure for
the US Census Geocoder API. This is a not-very-pythonic
dict [https://docs.python.org/3.6/library/stdtypes.html#dict] structure, but at least this ensures idempotency.

	Returns

	dict [https://docs.python.org/3.6/library/stdtypes.html#dict] representation of the entity.

	Return type

	dict [https://docs.python.org/3.6/library/stdtypes.html#dict]

	
to_json()

	Returns a JSON representation of the geographic entity.

Note

The JSON representation matches the JSON structure for
the US Census Geocoder API. This is a not-very-pythonic
structure, but at least this ensures idempotency.

	Returns

	str [https://docs.python.org/3.6/library/stdtypes.html#str] representation of the entity.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
abstract property entity_type

	The type of geographic entity that the object represents. Supports either:
locations or geographies.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

Error Reference

	Handling Errors

	Stack Traces

	Census Geocoder Errors

	CensusGeocoderError (from ValueError [https://docs.python.org/3.6/library/exceptions.html#ValueError])

	CensusAPIError (from CensusGeocoderError)

	ConfigurationError (from CensusGeocoderError)

	UnrecognizedBenchmarkError (from ConfigurationError)

	UnrecognizedVintageError (from ConfigurationError)

	MalformedBatchFileError (from ConfigurationError)

	NoAddressError (from ConfigurationError)

	NoFileProvidedError (from ConfigurationError)

	BatchSizeTooLargeError (from ConfigurationError)

	Census Geocoder Warnings

	CensusGeocoderWarning (from UserWarning [https://docs.python.org/3.6/library/exceptions.html#UserWarning])

Handling Errors

Stack Traces

Because the Census Geocoder produces exceptions which inherit from the
standard library, it leverages the same API for handling stack trace information.
This means that it will be handled just like a normal exception in unit test
frameworks, logging solutions, and other tools that might need that information.

Census Geocoder Errors

CensusGeocoderError (from ValueError [https://docs.python.org/3.6/library/exceptions.html#ValueError])

	
class CensusGeocoderError

	Base error raised by the Census Geocoder. Inherits from
ValueError [https://docs.python.org/3.6/library/exceptions.html#ValueError].

CensusAPIError (from CensusGeocoderError)

	
class CensusAPIError

	Error raised when the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/] returned an error.

ConfigurationError (from CensusGeocoderError)

	
class ConfigurationError

	Error raised when a geocoding request was configured incorrectly.

UnrecognizedBenchmarkError (from ConfigurationError)

	
class UnrecognizedBenchmarkError

	Error raised when a benchmark has been specified incorrectly.

UnrecognizedVintageError (from ConfigurationError)

	
class UnrecognizedVintageError

	Error raised when a vintage has been specified incorrectly.

MalformedBatchFileError (from ConfigurationError)

	
class MalformedBatchFileError

	Error raised when a batch file is structured improperly.

NoAddressError (from ConfigurationError)

	
class NoAddressError

	Error raised when there was no address supplied with the request.

NoFileProvidedError (from ConfigurationError)

	
class NoFileProvidedError

	Error raised when a batch file indicated in the request does not exist or cannot
be read.

BatchSizeTooLargeError (from ConfigurationError)

	
class BatchSizeTooLargeError

	Error raised when the size of a batch address file exceeds the limit of 10,000
imposed by the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/].

Census Geocoder Warnings

CensusGeocoderWarning (from UserWarning [https://docs.python.org/3.6/library/exceptions.html#UserWarning])

	
class CensusGeocoderWarning

	Base warning raised by the Census Geocoder. Inherits from
UserWarning.

Contributing to the Census Geocoder

Note

As a general rule of thumb, the US Census Geocoder applies PEP 8 [https://www.python.org/dev/peps/pep-0008] styling,
with some important differences.

	Branch

	Unit Tests

	latest [https://github.com/insightindustry/census-geocdoer/tree/master]

	[image: Build Status (Travis CI)]
 [https://travis-ci.com/insightindustry/census-geocoder][image: Code Coverage Status (Codecov)]
 [https://codecov.io/gh/insightindustry/census-geocoder][image: Documentation Status (ReadTheDocs)]
 [http://census-geocoder.readthedocs.io/en/latest/?badge=latest]

	v.0.5 [https://github.com/insightindustry/census-geocoder/tree/v.0.1.0]

	[image: Build Status (Travis CI)]
 [https://travis-ci.com/insightindustry/census-geocoder][image: Code Coverage Status (Codecov)]
 [https://codecov.io/gh/insightindustry/census-geocoder][image: Documentation Status (ReadTheDocs)]
 [http://census-geocoder.readthedocs.io/en/latest/?badge=v.0.1.0]

	develop [https://github.com/insightindustry/census-geocoder/tree/develop]

	[image: Build Status (Travis CI)]
 [https://travis-ci.com/insightindustry/census-geocoder][image: Code Coverage Status (Codecov)]
 [https://codecov.io/gh/insightindustry/census-geocoder][image: Documentation Status (ReadTheDocs)]
 [http://census-geocoder.readthedocs.io/en/latest/?badge=develop]

What makes an API idiomatic?

One of my favorite ways of thinking about idiomatic design comes from a talk
given by Luciano Ramalho at Pycon 2016 [https://www.youtube.com/watch?v=k55d3ZUF3ZQ] 5 where he listed traits of a Pythonic
API as being:

	don’t force [the user] to write boilerplate code

	provide ready to use functions and objects

	don’t force [the user] to subclass unless there’s a very good reason

	include the batteries: make easy tasks easy

	are simple to use but not simplistic: make hard tasks possible

	leverage the Python data model to:

	provide objects that behave as you expect

	avoid boilerplate through introspection (reflection) and metaprogramming.

Contents:

	Design Philosophy

	Style Guide

	Basic Conventions

	Naming Conventions

	Design Conventions

	Documentation Conventions

	Sphinx

	Docstrings

	Dependencies

	Preparing Your Development Environment

	Ideas and Feature Requests

	Testing

	Submitting Pull Requests

	Building Documentation

	Contributors

	References

Design Philosophy

The Census Geocoder is meant to be a “beautiful” and “usable” library. That means
that it should offer an idiomatic API that:

	works out of the box as intended,

	minimizes “bootstrapping” to produce meaningful output, and

	does not force users to understand how it does what it does.

In other words:

Users should simply be able to drive the car without looking at the engine.

Style Guide

Basic Conventions

	Do not terminate lines with semicolons.

	Line length should have a maximum of approximately 90 characters. If in doubt,
make a longer line or break the line between clear concepts.

	Each class should be contained in its own file.

	If a file runs longer than 2,000 lines…it should probably be refactored and
split.

	All imports should occur at the top of the file.

	Do not use single-line conditions:

GOOD
if x:
 do_something()

BAD
if x: do_something()

	When testing if an object has a value, be sure to use if x is None: or
if x is not None. Do not confuse this with if x: and if not x:.

	Use the if x: construction for testing truthiness, and if not x: for
testing falsiness. This is different from testing:

	if x is True:

	if x is False:

	if x is None:

	As of right now, because we feel that it negatively impacts readability and is
less-widely used in the community, we are not using type annotations.

Naming Conventions

	variable_name and not variableName or VariableName. Should be a
noun that describes what information is contained in the variable. If a bool,
preface with is_ or has_ or similar question-word that can be answered
with a yes-or-no.

	function_name and not function_name or functionName. Should be an
imperative that describes what the function does (e.g. get_next_page).

	CONSTANT_NAME and not constant_name or ConstantName.

	ClassName and not class_name or Class_Name.

Design Conventions

	Functions at the module level can only be aware of objects either at a higher
scope or singletons (which effectively have a higher scope).

	Functions and methods can use one positional argument (other than self
or cls) without a default value. Any other arguments must be keyword
arguments with default value given.

def do_some_function(argument):
 # rest of function...

def do_some_function(first_arg,
 second_arg = None,
 third_arg = True):
 # rest of function ...

	Functions and methods that accept values should start by validating their
input, throwing exceptions as appropriate.

	When defining a class, define all attributes in __init__.

	When defining a class, start by defining its attributes and methods as private
using a single-underscore prefix. Then, only once they’re implemented, decide
if they should be public.

	Don’t be afraid of the private attribute/public property/public setter pattern:

class SomeClass(object):
 def __init__(*args, **kwargs):
 self._private_attribute = None

 @property
 def private_attribute(self):
 # custom logic which may override the default return

 return self._private_attribute

 @setter.private_attribute
 def private_attribute(self, value):
 # custom logic that creates modified_value

 self._private_attribute = modified_value

	Separate a function or method’s final (or default) return from the rest of
the code with a blank line (except for single-line functions/methods).

Documentation Conventions

We are very big believers in documentation (maybe you can tell). To document
the US Census Geocoder we rely on several tools:

Sphinx [http://sphinx-doc.org] 1

Sphinx [http://sphinx-doc.org] 1 is used to organize the library’s documentation into this lovely
readable format (which is also published to ReadTheDocs [https://readthedocs.org] 2). This
documentation is written in reStructuredText [http://www.sphinx-doc.org/en/stable/rest.html] 3 files which are stored in
<project>/docs.

Tip

As a general rule of thumb, we try to apply the ReadTheDocs [https://readthedocs.org] 2 own
Documentation Style Guide [http://documentation-style-guide-sphinx.readthedocs.io/en/latest/style-guide.html] 4 to our RST documentation.

Hint

To build the HTML documentation locally:

	In a terminal, navigate to <project>/docs.

	Execute make html.

When built locally, the HTML output of the documentation will be available at
./docs/_build/index.html.

Docstrings

	Docstrings are used to document the actual source code itself. When
writing docstrings we adhere to the conventions outlined in PEP 257 [https://www.python.org/dev/peps/pep-0257].

Dependencies

	Validator-Collection v1.5.0 [https://github.com/insightindustry/validator-collection] or higher

	Backoff-Utils v1.0.1 [https://github.com/insightindustry/backoff-utils] or higher

	Requests v2.26 [https://docs.python-requests.org/] or higher

Preparing Your Development Environment

In order to prepare your local development environment, you should:

	Fork the Git repository [https://github.com/insightindustry/census-geocoder].

	Clone your forked repository.

	Set up a virtual environment (optional).

	Install dependencies:

census-geocoder/ $ pip install -r requirements.txt

And you should be good to go!

Ideas and Feature Requests

Check for open issues [https://github.com/insightindustry/census-geocoder/issues]
or create a new issue to start a discussion around a bug or feature idea.

Testing

If you’ve added a new feature, we recommend you:

	create local unit tests to verify that your feature works as expected, and

	run local unit tests before you submit the pull request to make sure nothing
else got broken by accident.

See also

For more information about the Census Geocoder testing approach please
see: Testing the Census Geocoder

Submitting Pull Requests

After you have made changes that you think are ready to be included in the main
library, submit a pull request on Github and one of our developers will review
your changes. If they’re ready (meaning they’re well documented, pass unit tests,
etc.) then they’ll be merged back into the main repository and slated for inclusion
in the next release.

Building Documentation

In order to build documentation locally, you can do so from the command line using:

census-geocoder/ $ cd docs
census-geocoder/docs $ make html

When the build process has finished, the HTML documentation will be locally
available at:

census-geocoder/docs/_build/html/index.html

Note

Built documentation (the HTML) is not included in the project’s Git
repository. If you need local documentation, you’ll need to build it.

Contributors

Thanks to everyone who helps make the Census Geocoder useful:

	Chris Modzelewski (@insightindustry [https://github.com/insightindustry/])

References

	1(1,2)

	http://sphinx-doc.org

	2(1,2)

	https://readthedocs.org

	3

	http://www.sphinx-doc.org/en/stable/rest.html

	4

	http://documentation-style-guide-sphinx.readthedocs.io/en/latest/style-guide.html

	5

	https://www.youtube.com/watch?v=k55d3ZUF3ZQ

Testing the Census Geocoder

Contents

	Testing the Census Geocoder

	Testing Philosophy

	Test Organization

	Configuring & Running Tests

	Installing with the Test Suite

	Command-line Options

	Running Tests

	Skipping Tests

	Incremental Tests

Testing Philosophy

Note

Unit tests for the Census Geocoder are written using pytest [https://docs.pytest.org/en/latest/] 1 and
a comprehensive set of test automation are provided by tox [https://tox.readthedocs.io] 2.

There are many schools of thought when it comes to test design. When building
the Census Geocoder, we decided to focus on practicality. That means:

	DRY is good, KISS is better. To avoid repetition, our test suite makes
extensive use of fixtures, parametrization, and decorator-driven behavior.
This minimizes the number of test functions that are nearly-identical.
However, there are certain elements of code that are repeated in almost all test
functions, as doing so will make future readability and maintenance of the
test suite easier.

	Coverage matters…kind of. We have documented the primary intended
behavior of every function in the SQLAthanor library, and the
most-likely failure modes that can be expected. At the time of writing, we
have about 85% code coverage. Yes, yes: We know that is less than 100%. But
there are edge cases which are almost impossible to bring about, based on
confluences of factors in the wide world. Our goal is to test the key
functionality, and as bugs are uncovered to add to the test functions as
necessary.

Test Organization

Each individual test module (e.g. test_validators.py) corresponds to a
conceptual grouping of functionality. For example:

	test_validators.py tests validator functions found in
census_geocoder/_validators.py

Certain test modules are tightly coupled, as the behavior in one test module may
have implications on the execution of tests in another. These test modules use
a numbering convention to ensure that they are executed in their required order,
so that test_1_NAME.py is always executed before
test_2_NAME.py.

Configuring & Running Tests

Installing with the Test Suite

Installing via pipFrom Local Development Environment
$ pip install census-geocoder[tests]

See also

When you
create a local development environment,
all dependencies for running and extending the test suite are installed.

Command-line Options

The Census Geocoder does not use any custom command-line options in its
test suite.

Tip

For a full list of the CLI options, including the defaults available, try:

census-geocoder $ cd tests/
census-geocoder/tests/ $ pytest --help

Running Tests

Entire Test SuiteTest ModuleTest Function
tests/ $ pytest

tests/ $ pytest tests/test_module.py

tests/ $ pytest tests/test_module.py -k 'test_my_test_function'

Skipping Tests

Note

Because of the simplicity of the Census Geocoder, the test suite does
not currently support any test skipping.

Incremental Tests

Note

The Census Geocoder test suite does support incremental testing,
however at the moment none of the tests designed rely on this functionality.

A variety of test functions are designed to test related functionality. As a
result, they are designed to execute incrementally. In order to execute tests
incrementally, they need to be defined as methods within a class that you decorate
with the @pytest.mark.incremental decorator as shown below:

@pytest.mark.incremental
class TestIncremental(object):
 def test_function1(self):
 pass
 def test_modification(self):
 assert 0
 def test_modification2(self):
 pass

This class will execute the TestIncremental.test_function1() test, execute and
fail on the TestIncremental.test_modification() test, and automatically fail
TestIncremental.test_modification2() because of the .test_modification()
failure.

To pass state between incremental tests, add a state argument to their method
definitions. For example:

@pytest.mark.incremental
class TestIncremental(object):
 def test_function(self, state):
 state.is_logged_in = True
 assert state.is_logged_in = True
 def test_modification1(self, state):
 assert state.is_logged_in is True
 state.is_logged_in = False
 assert state.is_logged_in is False
 def test_modification2(self, state):
 assert state.is_logged_in is True

Given the example above, the third test (test_modification2) will fail because
test_modification updated the value of state.is_logged_in.

Note

state is instantiated at the level of the entire test session (one run of
the test suite). As a result, it can be affected by tests in other test modules.

	1

	https://docs.pytest.org/en/latest/

	2

	https://tox.readthedocs.io

Release History

Contributors

	Chris Modzelewski (@insightindustry [https://github.com/insightindustry/])

Contents

	Release History

	Release 0.1.0

Release 0.1.0

[image: Build Status (Travis CI)]
 [https://travis-ci.com/insightindustry/census-geocoder][image: Code Coverage Status (Codecov)]
 [https://codecov.io/gh/insightindustry/census-geocoder][image: Documentation Status (ReadTheDocs)]
 [http://census-geocoder.readthedocs.io/en/latest/?badge=v.0.1.0]
	Initial public release.

Glossary

	Benchmark
	The period in time when the geographic data was snapshotted for use / return by the
Census Geocoder API [https://geocoding.geo.census.gov/geocoder/].

	Census Block
	The single smallest element in the core geographic hierarchy
is the Census Block. This is the most granular geographical area for which the US
Census Bureau reports data, and is the smallest geographic unit where data is
available for 100% of its resident population.

	Census Data
	This is information that is collected from the Constitutionally-mandated decennial
census, which collects information from 100% of residents in the United States.

	Centroid Latitude
	The latitude coordinate for the geometric center of a
geographic area.

	Centroid Longitude
	The longitude coordinate for the geometric center of a
geographic area.

	Internal Point Latitude
	The Census Bureau calculates an internal point (latitude and longitude coordinates)
for each geographic entity. For many geographic entities, the internal point is at or
near the geographic center of the entity. For some irregularly shaped entities (such
as those shaped like a crescent), the calculated geographic center may be located
outside the boundaries of the entity. In such instances, the internal point is
identified as a point inside the entity boundaries nearest to the calculated
geographic center and, if possible, within a land polygon.

	Internal Point Longitude
	The Census Bureau calculates an internal point (latitude and longitude coordinates)
for each geographic entity. For many geographic entities, the internal point is at or
near the geographic center of the entity. For some irregularly shaped entities (such
as those shaped like a crescent), the calculated geographic center may be located
outside the boundaries of the entity. In such instances, the internal point is
identified as a point inside the entity boundaries nearest to the calculated
geographic center and, if possible, within a land polygon.

	Forward Geocoding
	Also known as geocoding, a process that identifies a specific canonical
location based on its street address.

	Geocoding
	The act of determining a specific, canonical location based on some input data.

See also

	Forward Geocoding

	Reverse Geocoding

	Geography
	A geographical area. Corresponds to a layer and represented in the
Census Geocoder as a
GeographicArea.

	Layer
	When working with the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/] (particularly when
getting geographic area data), you have the ability to
control which types of geographic area get returned. These types of geographic area
are called “layers”. Which layers are available is ultimately
determined by the vintage of the data you are retrieving.

See also

	Geographies in the Census Geocoder >
Benchmarks, Vintages, and Layers

	One-line Address
	A physical / mailing address represented in a single line of text, like
'4600 Silver Hill Rd, Washington, DC 20233'.

	Parametrized Address
	An address that has been broken down into its component parts. Thus, a single-line
address like '4600 Silver Hill Rd, Washington, DC 20233' gets broken down into:

	STREET: '4600 Silver Hill Rd'

	CITY: 'Washington'

	STATE: 'DC'

	ZIP CODE: '20233'

	Reverse Geocoding
	A process that identifies a specific canonical location based on its precise
geographic coordinates (typically expressed as latitude and longitude).

	Sampled Data
	Data reported by the US Census Bureau that is derived from data collected from a
subset of the resident population (i.e. from a surveyed sample of potential
respondents).

	Tigerline
	Tigerline and Shapefiles represent the GIS data that defines all of the features
(places) and geographical areas (polygons) that comprise the mapping data for the
Census Geocoder API [https://geocoding.geo.census.gov/geocoder/].

	Vintage
	The census or survey data that the geographic area meta-data returned by the
Census Geocoder API [https://geocoding.geo.census.gov/geocoder/] is linked to, given that geographic area’s benchmark.

SQLAthanor License

MIT License

Copyright (c) 2021 Insight Industry Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Python Module Index

 c |
 t

 		 	

 		
 c	

 	[image: -]
 	
 census_geocoder	

 	
 	
 census_geocoder.errors	

 	
 	
 census_geocoder.geographies	

 	
 	
 census_geocoder.locations	

 	
 	
 census_geocoder.metaclasses	

 		 	

 		
 t	

 	
 	
 tests	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

A

 	
 	address (MatchedAddress property)

 	AIJUA (class in census_geocoder.geographies)

 	american_indian_joint_use_areas (GeographyCollection property)

 	
 	ANRC (class in census_geocoder.geographies)

 	anrc (GeographyCollection property)

 	ANVSA (class in census_geocoder.geographies)

 	anvsa (GeographyCollection property)

B

 	
 	BaseEntity (class in census_geocoder.metaclasses)

 	basename (GeographicArea property)

 	BatchSizeTooLargeError (class in census_geocoder.errors)

 	Benchmark

 	benchmark (Location property)

 	benchmark_description (Location property)

 	benchmark_id (Location property)

 	benchmark_is_default (Location property)

 	benchmark_name (Location property)

 	
 	block (GeographicArea property)

 	(MatchedAddress property)

 	block_group (GeographicArea property)

 	block_groups (GeographyCollection property)

 	blocks (GeographyCollection property)

 	blocks_2020 (GeographyCollection property)

 	
 built-in function

 	inspect()

 	to_dict()

 	to_json()

C

 	
 	cbsa (GeographicArea property)

 	cbsa_pci (GeographicArea property)

 	Census Block

 	Census Data

 	
 census_geocoder.errors

 	module

 	
 census_geocoder.geographies

 	module

 	
 census_geocoder.locations

 	module

 	
 census_geocoder.metaclasses

 	module

 	CensusAPIError (class in census_geocoder.errors)

 	CensusBlock (class in census_geocoder.geographies)

 	CensusBlock_2020 (class in census_geocoder.geographies)

 	CensusBlockGroup (class in census_geocoder.geographies)

 	CensusDesignatedPlace (class in census_geocoder.geographies)

 	CensusDivision (class in census_geocoder.geographies)

 	CensusGeocoderError (class in census_geocoder.errors)

 	CensusGeocoderWarning (class in census_geocoder.errors)

 	CensusRegion (class in census_geocoder.geographies)

 	CensusTract (class in census_geocoder.geographies)

 	Centroid Latitude

 	Centroid Longitude

 	city (MatchedAddress property)

 	
 	combined_nectas (GeographyCollection property)

 	CombinedNECTA (class in census_geocoder.geographies)

 	CombinedStatisticalArea (class in census_geocoder.geographies)

 	ConfigurationError (class in census_geocoder.errors)

 	congressional_districts_111 (GeographyCollection property)

 	congressional_districts_113 (GeographyCollection property)

 	congressional_districts_115 (GeographyCollection property)

 	congressional_districts_116 (GeographyCollection property)

 	congressional_session_code (GeographicArea property)

 	CongressionalDistrict (class in census_geocoder.geographies)

 	CongressionalDistrict_111 (class in census_geocoder.geographies)

 	CongressionalDistrict_113 (class in census_geocoder.geographies)

 	CongressionalDistrict_115 (class in census_geocoder.geographies)

 	CongressionalDistrict_116 (class in census_geocoder.geographies)

 	consolidated_cities (GeographyCollection property)

 	ConsolidatedCity (class in census_geocoder.geographies)

 	counties (GeographyCollection property)

 	County (class in census_geocoder.geographies)

 	county_cc (GeographicArea property)

 	county_fips_code (GeographicArea property)

 	(MatchedAddress property)

 	county_ns (GeographicArea property)

 	county_subdivisions (GeographyCollection property)

 	CountySubDivision (class in census_geocoder.geographies)

 	csa (GeographicArea property)

 	(GeographyCollection property)

D

 	
 	division_fips_code (GeographicArea property)

 	
 	Divisions (built-in variable)

 	divisions (GeographyCollection property)

E

 	
 	elementary_school_districts (GeographyCollection property)

 	ElementarySchoolDistrict (class in census_geocoder.geographies)

 	entity_type (BaseEntity property)

 	(GeographicArea property)

 	(GeographicEntity property)

 	(GeographyCollection property)

 	(Location property)

 	(MatchedAddress property)

 	
 	Estate (class in census_geocoder.geographies)

 	estates (GeographyCollection property)

F

 	
 	federal_american_indian_reservations (GeographyCollection property)

 	FederalAmericanIndianReservation (class in census_geocoder.geographies)

 	Forward Geocoding

 	from_address (MatchedAddress property)

 	from_address() (GeographicArea class method)

 	(GeographicEntity class method)

 	(Location class method)

 	from_batch() (GeographicArea class method)

 	(GeographicEntity class method)

 	(Location class method)

 	from_coordinates() (GeographicArea class method)

 	(GeographicEntity class method)

 	(Location class method)

 	from_csv_record() (BaseEntity class method)

 	(GeographicArea class method)

 	(GeographicEntity class method)

 	(GeographyCollection method)

 	(Location class method)

 	(MatchedAddress class method)

 	
 	from_dict() (BaseEntity class method)

 	(GeographicArea class method)

 	(GeographicEntity class method)

 	(GeographyCollection class method)

 	(Location class method)

 	(MatchedAddress class method)

 	from_json() (BaseEntity class method)

 	(GeographicArea class method)

 	(GeographicEntity class method)

 	(GeographyCollection class method)

 	(Location class method)

 	(MatchedAddress class method)

 	funcstat (GeographicArea property)

 	functional_status (GeographicArea property)

G

 	
 	Geocoding

 	GeographicArea (class in census_geocoder.geographies)

 	GeographicEntity (class in census_geocoder.metaclasses)

 	geographies (MatchedAddress property)

 	
 	Geography

 	geography_type (GeographicArea property)

 	GeographyCollection (class in census_geocoder.geographies)

 	geoid (GeographicArea property)

H

 	
 	hawaiian_home_lands (GeographyCollection property)

 	
 	HawaiianHomeLand (class in census_geocoder.geographies)

 	high_school_grade (GeographicArea property)

I

 	
 	incorporated_places (GeographyCollection property)

 	IncorporatedPlace (class in census_geocoder.geographies)

 	input_address (Location property)

 	input_city (Location property)

 	input_one_line (Location property)

 	input_state (Location property)

 	input_street (Location property)

 	input_zip_code (Location property)

 	
 	
 inspect()

 	built-in function

 	inspect() (GeographicArea method)

 	(GeographicEntity method)

 	(Location method)

 	(MatchedAddress method)

 	Internal Point Latitude

 	Internal Point Longitude

 	is_principal_city (GeographicArea property)

L

 	
 	land_area (GeographicArea property)

 	latitude (GeographicArea property)

 	(MatchedAddress property)

 	latitude_internal_point (GeographicArea property)

 	Layer

 	legal_statistical_area (GeographicArea property)

 	legislative_session_year (GeographicArea property)

 	
 	Location (class in census_geocoder.locations)

 	longitude (GeographicArea property)

 	(MatchedAddress property)

 	longitude_internal_point (GeographicArea property)

 	low_school_grade (GeographicArea property)

 	lsad (GeographicArea property)

 	lsad_category (GeographicArea property)

M

 	
 	MalformedBatchFileError (class in census_geocoder.errors)

 	matched_addresses (Location property)

 	MatchedAddress (class in census_geocoder.locations)

 	metropolitan_divisions (GeographyCollection property)

 	MetropolitanDivision (class in census_geocoder.geographies)

 	MetropolitanNECTA (class in census_geocoder.geographies)

 	MetropolitanStatisticalArea (class in census_geocoder.geographies)

 	metrpolitan_nectas (GeographyCollection property)

 	micropolitan_nectas (GeographyCollection property)

 	
 	MicropolitanNECTA (class in census_geocoder.geographies)

 	MicropolitanStatisticalArea (class in census_geocoder.geographies)

 	
 module

 	census_geocoder.errors

 	census_geocoder.geographies

 	census_geocoder.locations

 	census_geocoder.metaclasses

 	tests

 	msa (GeographyCollection property)

N

 	
 	name (GeographicArea property)

 	National (built-in variable)

 	necta_divisions (GeographyCollection property)

 	
 	necta_pci (GeographicArea property)

 	NECTADivision (class in census_geocoder.geographies)

 	NoAddressError (class in census_geocoder.errors)

 	NoFileProvidedError (class in census_geocoder.errors)

O

 	
 	object_id (GeographicArea property)

 	off_reservation_trust_lands (GeographyCollection property)

 	OffReservationTrustLand (class in census_geocoder.geographies)

 	
 	oid (GeographicArea property)

 	One-line Address

 	OTSA (class in census_geocoder.geographies)

 	otsa (GeographyCollection property)

P

 	
 	Parametrized Address

 	place (GeographicArea property)

 	place_cc (GeographicArea property)

 	place_ns (GeographicArea property)

 	pre_direction (MatchedAddress property)

 	pre_qualifier (MatchedAddress property)

 	pre_type (MatchedAddress property)

 	
 	PUMA (class in census_geocoder.geographies)

 	PUMA_2010 (class in census_geocoder.geographies)

 	pumas (GeographyCollection property)

 	pumas_2010 (GeographyCollection property)

 	
 Python Enhancement Proposals

 	PEP 257

 	PEP 8

R

 	
 	region_fips_code (GeographicArea property)

 	Regions (built-in variable)

 	
 	regions (GeographyCollection property)

 	Reverse Geocoding

S

 	
 	Sampled Data

 	school_district_type (GeographicArea property)

 	SDTSA (class in census_geocoder.geographies)

 	sdtsa (GeographyCollection property)

 	secondary_school_districts (GeographyCollection property)

 	SecondarySchoolDistrict (class in census_geocoder.geographies)

 	State (class in census_geocoder.geographies)

 	state (MatchedAddress property)

 	state_abbreviation (GeographicArea property)

 	state_american_indian_reservations (GeographyCollection property)

 	state_fips_code (GeographicArea property)

 	(MatchedAddress property)

 	state_legislative_districts_lower (GeographyCollection property)

 	state_legislative_districts_lower_2010 (GeographyCollection property)

 	state_legislative_districts_lower_2012 (GeographyCollection property)

 	state_legislative_districts_lower_2016 (GeographyCollection property)

 	state_legislative_districts_lower_2018 (GeographyCollection property)

 	state_legislative_districts_upper (GeographyCollection property)

 	state_legislative_districts_upper_2010 (GeographyCollection property)

 	state_legislative_districts_upper_2012 (GeographyCollection property)

 	state_legislative_districts_upper_2016 (GeographyCollection property)

 	
 	state_legislative_districts_upper_2018 (GeographyCollection property)

 	state_ns (GeographicArea property)

 	StateAmericanIndianReservation (class in census_geocoder.geographies)

 	StateLegislativeDistrictLower (class in census_geocoder.geographies)

 	StateLegislativeDistrictLower.StateLegislativeDistrictLower_2010 (class in census_geocoder.geographies)

 	StateLegislativeDistrictLower.StateLegislativeDistrictLower_2012 (class in census_geocoder.geographies)

 	StateLegislativeDistrictLower.StateLegislativeDistrictLower_2016 (class in census_geocoder.geographies)

 	StateLegislativeDistrictLower.StateLegislativeDistrictLower_2018 (class in census_geocoder.geographies)

 	StateLegislativeDistrictUpper (class in census_geocoder.geographies)

 	StateLegislativeDistrictUpper.StateLegislativeDistrictUpper_2010 (class in census_geocoder.geographies)

 	StateLegislativeDistrictUpper.StateLegislativeDistrictUpper_2012 (class in census_geocoder.geographies)

 	StateLegislativeDistrictUpper.StateLegislativeDistrictUpper_2016 (class in census_geocoder.geographies)

 	StateLegislativeDistrictUpper.StateLegislativeDistrictUpper_2018 (class in census_geocoder.geographies)

 	States (built-in variable)

 	states (GeographyCollection property)

 	street (MatchedAddress property)

 	Subbarrio (class in census_geocoder.geographies)

 	subbarrios (GeographyCollection property)

 	suffix_direction (MatchedAddress property)

 	suffix_qualifier (MatchedAddress property)

 	suffix_type (MatchedAddress property)

T

 	
 	TDSA (class in census_geocoder.geographies)

 	tdsa (GeographyCollection property)

 	
 tests

 	module

 	Tigerline

 	tigerline_id (MatchedAddress property)

 	tigerline_side (MatchedAddress property)

 	to_address (MatchedAddress property)

 	
 to_dict()

 	built-in function

 	to_dict() (BaseEntity method)

 	(GeographicArea method)

 	(GeographicEntity method)

 	(GeographyCollection method)

 	(Location method)

 	(MatchedAddress method)

 	
 to_json()

 	built-in function

 	
 	to_json() (BaseEntity method)

 	(GeographicArea method)

 	(GeographicEntity method)

 	(GeographyCollection method)

 	(Location method)

 	(MatchedAddress method)

 	tract (GeographicArea property)

 	(MatchedAddress property)

 	tracts (GeographyCollection property)

 	traffic_analysis_districts (GeographyCollection property)

 	traffic_analysis_zones (GeographyCollection property)

 	TrafficAnalysisDistrict (class in census_geocoder.geographies)

 	TrafficAnalysisZone (class in census_geocoder.geographies)

 	tribal_block_groups (GeographyCollection property)

 	tribal_subdivisions (GeographyCollection property)

 	tribal_tracts (GeographyCollection property)

 	TribalCensusBlockGroup (class in census_geocoder.geographies)

 	TribalCensusTract (class in census_geocoder.geographies)

 	TribalSubDivision (class in census_geocoder.geographies)

U

 	
 	unified_school_districts (GeographyCollection property)

 	UnifiedSchoolDistrict (class in census_geocoder.geographies)

 	UnrecognizedBenchmarkError (class in census_geocoder.errors)

 	UnrecognizedVintageError (class in census_geocoder.errors)

 	urban_clusters (GeographyCollection property)

 	urban_clusters_2010 (GeographyCollection property)

 	urban_growth_areas (GeographyCollection property)

 	
 	UrbanCluster (class in census_geocoder.geographies)

 	UrbanCluster_2010 (class in census_geocoder.geographies)

 	UrbanGrowthArea (class in census_geocoder.geographies)

 	urbanized_areas (GeographyCollection property)

 	urbanized_areas_2010 (GeographyCollection property)

 	UrbanizedArea (class in census_geocoder.geographies)

 	UrbanizedArea_2010 (class in census_geocoder.geographies)

V

 	
 	Vintage

 	vintage (Location property)

 	vintage_description (Location property)

 	vintage_id (Location property)

 	
 	vintage_is_default (Location property)

 	vintage_name (Location property)

 	voting_districts (GeographyCollection property)

 	VotingDistrict (class in census_geocoder.geographies)

W

 	
 	water_area (GeographicArea property)

Z

 	
 	ZCTA5 (class in census_geocoder.geographies)

 	zcta5 (GeographicArea property)

 	(GeographyCollection property)

 	zcta5_cc (GeographicArea property)

 	
 	ZCTA_2010 (class in census_geocoder.geographies)

 	zcta_2010 (GeographyCollection property)

 	ZCTA_2020 (class in census_geocoder.geographies)

 	zcta_2020 (GeographyCollection property)

 	zip_code (MatchedAddress property)

Benchmarks and Vintages

The data returned by the `Census Geocoder API`_ is different from typical geocoding
services, in that it is time-sensitive. A geocoding service like the Google Maps API or
Here.com only cares about the current location. But the US Census Bureau’s information
is inherently linked to the statistical data collected by the US Census Bureau at
particular moments in time.

Thus, when making requests against the `Census Geocoder API`_ you are always asking for
geographic location data or geographic area data as of a particular date. You might think
“geographies don’t change”, but in actuality they are constantly evolving. Congressional
districts, school districts, town lines, county lines, street names, house numbers, etc.
are all constantly evolving. And to ensure that the statistical data is tied to the
locations properly, that alignment needs to be maintained through two key concepts:

	Benchmarks

	Vintages

The benchmark is the time period when geographic information was snapshotted for
use / publication in the `Census Geocoder API`_. This is typically done twice per year,
and represents the “geographic definitions as of the time period indicated by the
benchmark”.

The vintage is the census or survey data that the geographies are linked to. Thus,
the geographic identifiers or statistical data associated with locations or geographic
areas within a given benchmark are also linked to a particular vintage of census/survey
data. Trying to use those identifiers or statistical data with a different vintage of data
may produce inaccurate results.

The `Census Geocoder API`_ supports a variety of benchmarks and vintages, and they are
unfortunately poorly documented and difficult to interpret. Therefore, the
Census Geocoder has been designed to streamline and simplify their usage.

Vintages are only available for a given benchmark. The table below provides guidance on
the vintages and benchmarks supported by the Census Geocoder:

	
	BENCHMARKS

	Current

	Census2020

	VINTAGES

	Current

	Census2020

	Census2020

	Census2010

	ACS2019

	

	ACS2018

	

	ACS2017

	

	Census2010

	

When using the Census Geocoder, you can supply the benchmark and
vintage directly when executing your geocoding request:

Single-line AddressParametrized AddressCoordinatesBatch File
import census_geocoder as geocoder

result = geocoder.location.from_address('4600 Silver Hill Rd, Washington, DC 20233',
 benchmark = 'Current',
 vintage = 'ACS2019')

result = geocoder.geography.from_address('4600 Silver Hill Rd, Washington, DC 20233',
 benchmark = 'Current',
 vintage = 'ACS2019')

See also

	Location.from_address()

	GeographicArea.from_address()

import census_geocoder as geocoder

result = geocoder.location.from_address(street = '4600 Silver Hill Rd',
 city = 'Washington',
 state = 'DC',
 zip_code = '20233',
 benchmark = 'Current',
 vintage = 'ACS2019')

result = geocoder.geography.from_address(street = '4600 Silver Hill Rd',
 city = 'Washington',
 state = 'DC',
 zip_code = '20233',
 benchmark = 'Current',
 vintage = 'ACS2019')

See also

	Location.from_address()

	GeographicArea.from_address()

import census_geocoder as geocoder

result = geocoder.location.from_coordinates(longitude = -76.92744,
 latitude = 38.845985,
 benchmark = 'Current',
 vintage = 'ACS2019')

result = geocoder.geography.from_coordinates(longitude = -76.92744,
 latitude = 38.845985,
 benchmark = 'Current',
 vintage = 'ACS2019')

See also

	Location.from_coordinates()

	GeographicArea.from_coordinates()

import census_geocoder as geocoder

result = geocoder.location.from_batch(file_ = '/my-csv-file.csv',
 benchmark = 'Current',
 vintage = 'ACS2019')

result = geocoder.geography.from_batch(file_ = '/my-csv-file.csv',
 benchmark = 'Current',
 vintage = 'ACS2019')

See also

	Location.from_batch()

	GeographicArea.from_batch()

Hint

Several important things to be aware of when it comes to benchmarks and vintages in the
Census Geocoder library:

Unless over-ridden by the CENSUS_GEOCODER_BENCHMARK or CENSUS_GEOCODER_VINTAGE
environment variables, the benchmark and vintage default to 'Current' and
'Current' respectively.

The benchmark and vintage are case-insensitive. This means that you can supply
'Current', 'CURRENT', or 'current' and it will all work the same.

If you want to set a different default benchmark or vintage, you can do so by setting
CENSUS_GEOCODER_BENCHMARK and CENSUS_GEOCODER_VINTAGE environment variables
to the defaults you want to use.

Layers

When working with the `Census Geocoder API`_ (particularly when
getting geographic area data), you have the ability to
control which types of geographic area get returned. These types of geographic area
are called “layers”.

An example of two different “layers” might be “State” and “County”. These are two
different types of geographic area, one of which (County) may be encompassed by the other
(State). In general, geographic areas within the same layer cannot and do not overlap.
However different layers can and do overlap, where one layer (State) may contain
multiple other layers (Counties), or one layer (Metropolitan Statistical Areas) may
partially overlap multiple entities within a different layer (States).

When using the Census Geocoder you can easily specify the layers of data that you
want returned. Unless overridden by the CENSUS_GEOCODER_LAYERS environment variable,
the layers returned will always default to 'all'.

Which layers are available is ultimately determined by the vintage of the data you
are retrieving. The following represents the list of layers available in each vintage:

Current

	2010 Census Public Use Microdata Areas

	2010 Census PUMAs

	2010 PUMAs

	Census Public Use Microdata Areas

	Census PUMAs

	PUMAs

	2020 Census ZIP Code Tabulation Areas

	2020 Census ZCTAs

	Census ZCTAs

	ZCTAs

	Tribal Census Tracts

	Tribal Block Groups

	Census Tracts

	Census Block Groups

	2020 Census Blocks

	Census Blocks

	Blocks

	Unified School Districts

	Secondary School Districts

	Elementary School Districts

	Estates

	County Subdivisions

	Subbarrios

	Consolidated Cities

	Incorporated Places

	Census Designated Places

	CDPs

	Alaska Native Regional Corporations

	Tribal Subdivisions

	Federal American Indian Reservations

	Off-Reservation Trust Lands

	State American Indian Reservations

	Hawaiian Home Lands

	Alaska Native Village Statistical Areas

	Oklahoma Tribal Statistical Areas

	State Designated Tribal Stastical Areas

	Tribal Designated Statistical Areas

	American Indian Joint-Use Areas

	116th Congressional Districts

	Congressional Districts

	2018 State Legislative Districts - Upper

	State Legislative Districts - Upper

	2018 State Legislative Districts - Lower

	State Legislative Districts - Lower

	Census Divisions

	Divisions

	Census Regions

	Regions

	Combined New England City and Town Areas

	Combined NECTAs

	New England City and Town Area Divisions

	NECTA Divisions

	Metropolitan New England City and Town Areas

	Metropolitan NECTAs

	Micropolitan New England City and Town Areas

	Micropolitan NECTAs

	Combined Statistical Areas

	CSAs

	Metropolitan Divisions

	Metropolitan Statistical Areas

	Micropolitan Statistical Areas

	States

	Counties

Census2020

	Urban Growth Areas

	Tribal Census Tracts

	Tribal Block Groups

	Census Tracts

	Census Block Groups

	Block Groups

	Census Blocks

	Blocks

	Unified School Districts

	Secondary School Districts

	Elementary School Districts

	Estates

	County Subdivisions

	Subbarrios

	Consolidated Cities

	Incorporated Places

	Census Designated Places

	CDPs

	Alaska Native Regional Corporations

	Tribal Subdivisions

	Federal American Indian Reservations

	Off-Reservation Trust Lands

	State American Indian Reservations

	Hawaiian Home Lands

	Alaska Native Village Statistical Areas

	Oklahoma Tribal Statistical Areas

	State Designated Tribal Stastical Areas

	Tribal Designated Statistical Areas

	American Indian Joint-Use Areas

	116th Congressional Districts

	Congressional Districts

	2018 State Legislative Districts - Upper

	State Legislative Districts - Upper

	2018 State Legislative Districts - Lower

	State Legislative Districts - Lower

	Voting Districts

	Census Divisions

	Divisions

	Census Regions

	Regions

	Combined New England City and Town Areas

	Combined NECTAs

	New England City and Town Area Divisions

	NECTA Divisions

	Metropolitan New England City and Town Areas

	Metropolitan NECTAs

	Micropolitan New England City and Town Areas

	Micropolitan NECTAs

	Combined Statistical Areas

	CSAs

	Metropolitan Divisions

	Metropolitan Statistical Areas

	Micropolitan Statistical Areas

	States

	Counties

	Zip Code Tabulation Areas

	ZCTAs

ACS2019

	2010 Census Public Use Microdata Areas

	2010 Census PUMAs

	2010 PUMAs

	Census Public Use Microdata Areas

	Census PUMAs

	PUMAs

	2010 Census ZIP Code Tabulation Areas

	2010 Census ZCTAs

	Census ZCTAs

	ZCTAs

	Tribal Census Tracts

	Tribal Block Groups

	Census Tracts

	Census Block Groups

	Unified School Districts

	Secondary School Districts

	Elementary School Districts

	Estates

	County Subdivisions

	Subbarrios

	Consolidated Cities

	Incorporated Places

	Census Designated Places

	CDPs

	Alaska Native Regional Corporations

	Tribal Subdivisions

	Federal American Indian Reservations

	Off-Reservation Trust Lands

	State American Indian Reservations

	Hawaiian Home Lands

	Alaska Native Village Statistical Areas

	Oklahoma Tribal Statistical Areas

	State Designated Tribal Stastical Areas

	Tribal Designated Statistical Areas

	American Indian Joint-Use Areas

	116th Congressional Districts

	Congressional Districts

	2018 State Legislative Districts - Upper

	State Legislative Districts - Upper

	2018 State Legislative Districts - Lower

	State Legislative Districts - Lower

	Census Divisions

	Divisions

	Census Regions

	Regions

	2010 Census Urbanized Areas

	Census Urbanized Areas

	Urbanized Areas

	2010 Census Urban Clusters

	Census Urban Clusters

	Urban Clusters

	Combined New England City and Town Areas

	Combined NECTAs

	New England City and Town Area Divisions

	NECTA Divisions

	Metropolitan New England City and Town Areas

	Metropolitan NECTAs

	Micropolitan New England City and Town Areas

	Micropolitan NECTAs

	Combined Statistical Areas

	CSAs

	Metropolitan Divisions

	Metropolitan Statistical Areas

	Micropolitan Statistical Areas

	States

	Counties

ACS2018

	2010 Census Public Use Microdata Areas

	2010 Census PUMAs

	2010 PUMAs

	Census Public Use Microdata Areas

	Census PUMAs

	PUMAs

	2010 Census ZIP Code Tabulation Areas

	2010 Census ZCTAs

	Census ZCTAs

	ZCTAs

	Tribal Census Tracts

	Tribal Block Groups

	Census Tracts

	Census Block Groups

	Unified School Districts

	Secondary School Districts

	Elementary School Districts

	Estates

	County Subdivisions

	Subbarrios

	Consolidated Cities

	Incorporated Places

	Census Designated Places

	CDPs

	Alaska Native Regional Corporations

	Tribal Subdivisions

	Federal American Indian Reservations

	Off-Reservation Trust Lands

	State American Indian Reservations

	Hawaiian Home Lands

	Alaska Native Village Statistical Areas

	Oklahoma Tribal Statistical Areas

	State Designated Tribal Stastical Areas

	Tribal Designated Statistical Areas

	American Indian Joint-Use Areas

	116th Congressional Districts

	Congressional Districts

	2018 State Legislative Districts - Upper

	State Legislative Districts - Upper

	2018 State Legislative Districts - Lower

	State Legislative Districts - Lower

	Census Divisions

	Divisions

	Census Regions

	Regions

	2010 Census Urbanized Areas

	Census Urbanized Areas

	Urbanized Areas

	2010 Census Urban Clusters

	Census Urban Clusters

	Urban Clusters

	Combined New England City and Town Areas

	Combined NECTAs

	New England City and Town Area Divisions

	NECTA Divisions

	Metropolitan New England City and Town Areas

	Metropolitan NECTAs

	Micropolitan New England City and Town Areas

	Micropolitan NECTAs

	Combined Statistical Areas

	CSAs

	Metropolitan Divisions

	Metropolitan Statistical Areas

	Micropolitan Statistical Areas

	States

	Counties

ACS2017

	2010 Census Public Use Microdata Areas

	2010 Census PUMAs

	2010 PUMAs

	Census Public Use Microdata Areas

	Census PUMAs

	PUMAs

	2010 Census ZIP Code Tabulation Areas

	2010 Census ZCTAs

	Census ZCTAs

	ZCTAs

	Tribal Census Tracts

	Tribal Block Groups

	Census Tracts

	Census Block Groups

	Unified School Districts

	Secondary School Districts

	Elementary School Districts

	Estates

	County Subdivisions

	Subbarrios

	Consolidated Cities

	Incorporated Places

	Census Designated Places

	CDPs

	Alaska Native Regional Corporations

	Tribal Subdivisions

	Federal American Indian Reservations

	Off-Reservation Trust Lands

	State American Indian Reservations

	Hawaiian Home Lands

	Alaska Native Village Statistical Areas

	Oklahoma Tribal Statistical Areas

	State Designated Tribal Stastical Areas

	Tribal Designated Statistical Areas

	American Indian Joint-Use Areas

	115th Congressional Districts

	Congressional Districts

	2016 State Legislative Districts - Upper

	State Legislative Districts - Upper

	2016 State Legislative Districts - Lower

	State Legislative Districts - Lower

	Census Divisions

	Divisions

	Census Regions

	Regions

	2010 Census Urbanized Areas

	Census Urbanized Areas

	Urbanized Areas

	2010 Census Urban Clusters

	Census Urban Clusters

	Urban Clusters

	Combined New England City and Town Areas

	Combined NECTAs

	New England City and Town Area Divisions

	NECTA Divisions

	Metropolitan New England City and Town Areas

	Metropolitan NECTAs

	Micropolitan New England City and Town Areas

	Micropolitan NECTAs

	Combined Statistical Areas

	CSAs

	Metropolitan Divisions

	Metropolitan Statistical Areas

	Micropolitan Statistical Areas

	States

	Counties

Census2010

	Public Use Microdata Areas

	PUMAs

	Traffic Analysis Districts

	TADs

	Traffic Analysis Zones

	TAZs

	Urban Growth Areas

	ZIP Code Tabulation Areas

	Zip Code Tabulation Areas

	ZCTAs

	Tribal Census Tracts

	Tribal Block Groups

	Census Tracts

	Census Block Groups

	Census Blocks

	Blocks

	Unified School Districts

	Secondary School Districts

	Elementary School Districts

	Estates

	County Subdivisions

	Subbarrios

	Consolidated Cities

	Incorporated Places

	Census Designated Places

	CDPs

	Alaska Native Regional Corporations

	Tribal Subdivisions

	Federal American Indian Reservations

	Off-Reservation Trust Lands

	State American Indian Reservations

	Hawaiian Home Lands

	Alaska Native Village Statistical Areas

	Oklahoma Tribal Statistical Areas

	State Designated Tribal Stastical Areas

	Tribal Designated Statistical Areas

	American Indian Joint-Use Areas

	113th Congressional Districts

	111th Congressional Districts

	2012 State Legislative Districts - Upper

	2012 State Legislative Districts - Lower

	2010 State Legislative Districts - Upper

	2010 State Legislative Districts - Lower

	Voting Districts

	Census Divisions

	Divisions

	Census Regions

	Regions

	Urbanized Areas

	Urban Clusters

	Combined New England City and Town Areas

	Combined NECTAs

	New England City and Town Area Divisions

	NECTA Divisions

	Metropolitan New England City and Town Areas

	Metropolitan NECTAs

	Micropolitan New England City and Town Areas

	Micropolitan NECTAs

	Combined Statistical Areas

	CSAs

	Metropolitan Divisions

	Metropolitan Statistical Areas

	Micropolitan Statistical Areas

	States

	Counties

Note

You may notice that there are (logical) duplicate layers in the lists above, for example
“2010 Census PUMAs” and “2010 Census Public Use Microdata Areas”. This is because there
are multiple ways that users of Census data may refer to particular layers in their
work. This duplication is purely for the convenience of Census Geocoder users, since
the `Census Geocoder API`_ actually uses numerical identifiers for the layers returned.

When geocoding data, you can simply supply the layers you want using the layers
keyword argument as below:

Single-line AddressParametrized AddressCoordinatesBatch File
import census_geocoder as geocoder

result = geocoder.location.from_address('4600 Silver Hill Rd, Washington, DC 20233',
 benchmark = 'Current',
 vintage = 'ACS2019',
 layers = 'Census Tracts, States, CDPs, Divisions')

result = geocoder.geography.from_address('4600 Silver Hill Rd, Washington, DC 20233',
 benchmark = 'Current',
 vintage = 'ACS2019',
 layers = 'Census Tracts, States, CDPs, Divisions')

See also

	Location.from_address()

	GeographicArea.from_address()

import census_geocoder as geocoder

result = geocoder.location.from_address(street = '4600 Silver Hill Rd',
 city = 'Washington',
 state = 'DC',
 zip_code = '20233',
 benchmark = 'Current',
 vintage = 'ACS2019',
 layers = 'Census Tracts, States, CDPs, Divisions')

result = geocoder.geography.from_address(street = '4600 Silver Hill Rd',
 city = 'Washington',
 state = 'DC',
 zip_code = '20233',
 benchmark = 'Current',
 vintage = 'ACS2019',
 layers = 'Census Tracts, States, CDPs, Divisions')

See also

	Location.from_address()

	GeographicArea.from_address()

import census_geocoder as geocoder

result = geocoder.location.from_coordinates(longitude = -76.92744,
 latitude = 38.845985,
 benchmark = 'Current',
 vintage = 'ACS2019',
 layers = 'Census Tracts, States, CDPs, Divisions')

result = geocoder.geography.from_coordinates(longitude = -76.92744,
 latitude = 38.845985,
 benchmark = 'Current',
 vintage = 'ACS2019',
 layers = 'Census Tracts, States, CDPs, Divisions')

See also

	Location.from_coordinates()

	GeographicArea.from_coordinates()

import census_geocoder as geocoder

result = geocoder.location.from_batch(file_ = '/my-csv-file.csv',
 benchmark = 'Current',
 vintage = 'ACS2019')

result = geocoder.geography.from_batch(file_ = '/my-csv-file.csv',
 benchmark = 'Current',
 vintage = 'ACS2019',
 layers = 'Census Tracts, States, CDPs, Divisions')

See also

	Location.from_batch()

	GeographicArea.from_batch()

Hint

When using the Census Geocoder to return geographic area data, you can request
multiple layers worth of data by passing them in a comma-delimited string. This will
return separate data for each layer indicated. The comma-delimited string can include
white-space for easy readability, which means that the following two values are
considered identical:

	layers = 'Census Tracts, States, CDPs, Divisions'

	layers = 'Census Tracts,States,CDPs,Divisions'

To retrieve all available layers that have data for a given location, you can submit
'all'. Unless you have set the CENSUS_GEOCODER_LAYERS environment variable to a
different value, 'all' is the default set of layers that will be returned.

Note that layer names in the Census Geocoder are case-insensitive.

	Chris Modzelewski (@insightindustry [https://github.com/insightindustry/])

	Validator-Collection v1.5.0 [https://github.com/insightindustry/validator-collection] or higher

	Backoff-Utils v1.0.1 [https://github.com/insightindustry/backoff-utils] or higher

	Requests v2.26 [https://docs.python-requests.org/] or higher

 Retrieving data about the geographic areas that contain a given location/place is just
as straightforward as getting location data. In fact, the
syntax is almost identical. Just swap out the word 'location' for 'geography'
and you’re done!

Here’s how to do it:

Single-line AddressParametrized AddressCoordinatesBatch File
import census_geocoder as geocoder

result = geocoder.geography.from_address('4600 Silver Hill Rd, Washington, DC 20233')

See also

	GeographicArea.from_address()

import census_geocoder as geocoder

result = geocoder.geography.from_address(street = '4600 Silver Hill Rd',
 city = 'Washington',
 state = 'DC',
 zip_code = '20233')

See also

	GeographicArea.from_address()

import census_geocoder as geocoder

result = geocoder.geography.from_coordinates(longitude = -76.92744,
 latitude = 38.845985)

See also

	GeographicArea.from_coordinates()

import census_geocoder as geocoder

result = geocoder.geography.from_batch(file_ = '/my-csv-file.csv')

Caution

The batch file indicated can have a maximum of 10,000 records.

Warning

While the `Census Geocoder API`_ supports CSV, TXT, XLSX, and DAT formats the
Census Geocoder library only supports CSV and TXT formats so as to avoid
dependency-bloat (read: Why rely on other libraries to read XLSX format data?).

See also

	GeographicArea.from_batch()

 Retrieving data about canonical locations is very straightforward. You have four different
ways to get this information, depending on what information you have about the location
you want to geocode:

Single-line AddressParametrized AddressCoordinatesBatch File
import census_geocoder as geocoder

result = geocoder.location.from_address('4600 Silver Hill Rd, Washington, DC 20233')

See also

	Location.from_address()

import census_geocoder as geocoder

result = geocoder.location.from_address(street = '4600 Silver Hill Rd',
 city = 'Washington',
 state = 'DC',
 zip_code = '20233')

See also

	Location.from_address()

import census_geocoder as geocoder

result = geocoder.location.from_coordinates(longitude = -76.92744,
 latitude = 38.845985)

See also

	Location.from_coordinates()

import census_geocoder as geocoder

result = geocoder.location.from_batch(file_ = '/my-csv-file.csv')

Caution

The batch file indicated can have a maximum of 10,000 records.

Warning

While the `Census Geocoder API`_ supports CSV, TXT, XLSX, and DAT formats the
Census Geocoder library only supports CSV and TXT formats so as to avoid
dependency-bloat (read: Why rely on other libraries to read XLSX format data?).

See also

	Location.from_batch()

 Importing the Census Geocoder is very straightforward. You can either import its
components precisely (see API Reference) or simply import the entire module:

Import the entire module.
import census_geocoder as geocoder

result = geocoder.location.from_address('4600 Silver Hill Rd, Washington, DC 20233')
result = geocoder.geography.from_address('4600 Silver Hill Rd, Washington, DC 20233')

Import precise components.
from census_geocoder import Location, Geography

result = Location.from_address('4600 Silver Hill Rd, Washington, DC 20233')
result = Geography.from_address('4600 Silver Hill Rd, Washington, DC 20233')

 To install the US Census Geocoder, just execute:

$ pip install census-geocoder

	Branch

	Unit Tests

	latest [https://github.com/insightindustry/census-geocdoer/tree/master]

	[image: Build Status (Travis CI)]
 [https://travis-ci.com/insightindustry/census-geocoder][image: Code Coverage Status (Codecov)]
 [https://codecov.io/gh/insightindustry/census-geocoder][image: Documentation Status (ReadTheDocs)]
 [http://census-geocoder.readthedocs.io/en/latest/?badge=latest]

	v.0.5 [https://github.com/insightindustry/census-geocoder/tree/v.0.1.0]

	[image: Build Status (Travis CI)]
 [https://travis-ci.com/insightindustry/census-geocoder][image: Code Coverage Status (Codecov)]
 [https://codecov.io/gh/insightindustry/census-geocoder][image: Documentation Status (ReadTheDocs)]
 [http://census-geocoder.readthedocs.io/en/latest/?badge=v.0.1.0]

	develop [https://github.com/insightindustry/census-geocoder/tree/develop]

	[image: Build Status (Travis CI)]
 [https://travis-ci.com/insightindustry/census-geocoder][image: Code Coverage Status (Codecov)]
 [https://codecov.io/gh/insightindustry/census-geocoder][image: Documentation Status (ReadTheDocs)]
 [http://census-geocoder.readthedocs.io/en/latest/?badge=develop]

 While we’re partial to the US Census Geocoder as our primary means of interacting with
the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/], there are
obviously alternatives for you to consider. Some might be better for your use specific use
cases, so here’s how we think about them:

Roll Your OwnCensus GeocodeCensusBatchGeocodergeocoder/geopy
The Census Geocoder API [https://geocoding.geo.census.gov/geocoder/] is a
straightforward RESTful API. Which means that you can just execute your own HTTP
requests against it, retrieve the JSON results, and work with the resulting data
entirely yourself. This is what I did for years, until I got tired of repeating the
same patterns over and over again, and decided to build the Census Geocoder
instead.

For a super-simple use case, probably the most expedient way to do it. But of course,
more robust use cases would require your own scaffolding with built-in retry-logic,
object representation, error handling, etc. which becomes non-trivial.

Why not use a library with batteries included?

Tip

When to use it?

In practice, I find that rolling my own solution is great when it’s an extremely
simple use case, or a one-time operation (e.g. in a Jupyter Notebook) with no
business logic to speak of. It’s a “quick-and-dirty” solution, where I’m trading
rapid implementation (yay!) for less flexibility/functionality (boo!).

Considering how easy the Census Geocoder is to use, however, I
find that I never really roll my own scaffolding when working with the
Census Geocoder API [https://geocoding.geo.census.gov/geocoder/].

The Census Geocode [https://pypi.org/project/censusgeocode/] library is fantastic, and it was what I had used before building
the Census Geocoder library. However, it has a number of significant limitations
when compared to the US Census Geocoder:

	Results are returned as-is from the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/]. This means that:

	Results are essentially JSON objects represented as dict [https://docs.python.org/3.6/library/stdtypes.html#dict],
which makes interacting with them in Python a little more cumbersome (one has to
navigate nested dict [https://docs.python.org/3.6/library/stdtypes.html#dict] objects).

	Property/field names are as in the original Census data. This means that if you
do not have the documentation handy, it is hard to intuitively understand what
the data represents.

	The library is licensed under GPL3 [https://www.gnu.org/licenses/gpl-3.0.html],
which may complicate or limit its utilization in commercial or closed-source
software operating under different (non-GPL) licenses.

	The library requires you to remember / apply a lot of the internals of the
Census Geocoder API [https://geocoding.geo.census.gov/geocoder/] as-is (e.g. benchmark vintages) which is complicated given
the API’s limited documentation.

	The library does not support custom layers, and only returns the
default set of layers for any request.

The Census Geocoder explicitly addresses all of these concerns:

	The library uses native Python classes to represent results, providing a
more pythonic syntax for interacting with those classes.

	Properties / fields have been renamed to more human-understandable names.

	The Census Geocoder is made available under the more flexible
MIT License.

	The library streamlines the configuration of benchmarks and
vintages, and provides extensive
documentation.

	The library supports any and all layers supported by the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/].

Tip

When to use it?

Census Geocode [https://pypi.org/project/censusgeocode/] has one advantage over the US Census Geocoder: It has a CLI.

I haven’t found much use for a CLI in the work I’ve done with the
Census Geocoder API [https://geocoding.geo.census.gov/geocoder/], so have not implemented it in the US Census Geocoder.
Might add it in the future, if there are enough
feature requests for it [https://github.com/insightindustry/census-geocoder/issues/1].

Given the above, it may be worth using Census Geocode [https://pypi.org/project/censusgeocode/] instead of the
Census Geocoder if you expect to be using a CLI.

The CensusBatchGeocoder [https://github.com/datadesk/python-censusbatchgeocoder] is a fantastic library produced by the team at the
Los Angeles Times Data Desk. It is specifically designed to provide a fairly pythonic
interface for doing bulk geocoding operations, with great pandas [https://pandas.pydata.org/]
serialization / de-serialization support.

However, it does have a couple of limitations:

	Stale / Unmaintained? The library does not seem to have been updated since
2017, leading me to believe that it is stale and unmaintained. There are numerous
open issues [https://github.com/datadesk/python-censusbatchgeocoder/issues]
dating back to 2020, 2018, and 2017 that have seen no activity.

	No benchmark/vintage/layer support. The library does not support the
configuration of benchmarks, vintages, or
layers.

	Limited error handling. The library has somewhat limited error handling,
judging by the issues that have been reported in the repository.

	Optimized for bulk operations. The design of the library has been optimized
for geocoding in bulk, which makes transactional one-off requests cumbersome to
execute.

The Census Geocoder is obviously fresh / maintained, and has explicitly
implemented robust error handling, and support for benchmarks,
vintages, and layers. It is also designed to support
bulk operations and transactional one-off requests.

Tip

When to use it?

CensusBatchGeocoder [https://github.com/datadesk/python-censusbatchgeocoder] has one advantage over the US Census Geocoder: It can
serialize results to a pandas [https://pandas.pydata.org/] DataFrame seamlessly and simply.

This is a useful feature, and one that I have added/pinned for the
US Census Geocoder. If there are enough requests / up-votes on the
issue [https://github.com/insightindustry/census-geocoder/issues/2], I may
extend the library with this support in the future.

Given all this, it may be worth using CensusBatchGeocoder [https://github.com/datadesk/python-censusbatchgeocoder] instead of the
US Census Geocoder if you expect to be doing a lot of bulk operations using the
default benchmark/vintage/layers.

geocoder [https://geocoder.readthedocs.io/] and geopy [https://geopy.readthedocs.io/en/latest/] are two of my favorite geocoding libraries in the Python
ecosystem. They are both inherently pythonic, elegant, easy to use, and support most
of the major geocoding providers out there with a standardized / unified API.

So at first blush, one might think: Why not just use one of these great libraries to
handle requests against the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/]?

Well, the problem is that neither geocoder [https://geocoder.readthedocs.io/] nor geopy [https://geopy.readthedocs.io/en/latest/] supports the
Census Geocoder API [https://geocoding.geo.census.gov/geocoder/] as a geocoding provider. So…you can’t just use either of them
if you specifically want US Census geocoding data.

Secondly, both the geocoder [https://geocoder.readthedocs.io/] and geopy [https://geopy.readthedocs.io/en/latest/] libraries are optimized around providing
coordinates and feature information (e.g. matched address), which the
Census Geocoder API [https://geocoding.geo.census.gov/geocoder/] results go beyond (and are not natively compatible with).

So really, if you want to interact with the Census Geocoder API [https://geocoding.geo.census.gov/geocoder/], the
Census Geocoder library is designed to do exactly that.

Tip

When to use them?

If you only need relatively simple, coordinate/feature-focused
forward or reverse
geocoding from a different provider than the US Census Bureau, and you specifically
do not need data from the US Census Bureau.

 nav.xhtml

 Table of Contents

 		
 US Census Geocoder

_images/aianhh_diag.png
American Indian Areas (Federal)/ States Tribal Designated Statistical Areas
Off-Reservation Trust Lands
Tribal Census Tracts Oklahoma Tribal ~ Alaska Native Regional Corporations / American Indian Reservations (state) /

Statistical Areas Alaska Native Village Statistical Areas / State Designated Tribal Statistical Areas
Hawaiian Home Lands

Tribal Block Groups Tribal Subdivisions

CENSUS BLOCKS

_images/core_hierarchy.jpg
ZIP CODE TABULATION AREAS: & . 02030

NATIONAL: United States of America

~Unified School Disw
+ Secondary School Districts
+_Elementary School Districts

scHooL
DISTRICTS

CONGRESSIONAL DISTRICTS

STATE LEGISLATIVE DISTRICTS \LJ:\F«Z

VOTING DISTRICTS.

COUNTY SUB-DIVISIONS

REGIONS: e.5. Northeast

DIVISIONS: & . New England

STATES: e.g. Massachuserss

COUNTIES: <. Norfolk

CENSUS TRACTS

BLOCK GROUPS.

URBAN AREAS

+ Urban Clusters
- Urbanized Areas

CORE-BASED STATISTICAL AREAS

URBAN GROWTH AREAS

PUBLIC USE MICRODATA AREAS (PUNIAS)

PLACES

[TRAFFIC ANALYSIS.
lzoNES

"+ Traffic Analysis Districts

CENSUS BLOCKS

+ Combined Statistical Areas
+ Metropolitan Statiscical Areas
+ Micropolitan Statistical Areas
+ Combined NECTAs

- Metropolitan NECTAS

n NECTAS

+ Mesropolitan Divisions

+ Micropol

+ Consolidated Cicies
+ Subbarrios

_static/aianhh_diag.png
American Indian Areas (Federal)/ States Tribal Designated Statistical Areas
Off-Reservation Trust Lands
Tribal Census Tracts Oklahoma Tribal ~ Alaska Native Regional Corporations / American Indian Reservations (state) /

Statistical Areas Alaska Native Village Statistical Areas / State Designated Tribal Statistical Areas
Hawaiian Home Lands

Tribal Block Groups Tribal Subdivisions

CENSUS BLOCKS

_static/file.png

_static/core_hierarchy.jpg
ZIP CODE TABULATION AREAS: & . 02030

NATIONAL: United States of America

~Unified School Disw
+ Secondary School Districts
+_Elementary School Districts

scHooL
DISTRICTS

CONGRESSIONAL DISTRICTS

STATE LEGISLATIVE DISTRICTS \LJ:\F«Z

VOTING DISTRICTS.

COUNTY SUB-DIVISIONS

REGIONS: e.5. Northeast

DIVISIONS: & . New England

STATES: e.g. Massachuserss

COUNTIES: <. Norfolk

CENSUS TRACTS

BLOCK GROUPS.

URBAN AREAS

+ Urban Clusters
- Urbanized Areas

CORE-BASED STATISTICAL AREAS

URBAN GROWTH AREAS

PUBLIC USE MICRODATA AREAS (PUNIAS)

PLACES

[TRAFFIC ANALYSIS.
lzoNES

"+ Traffic Analysis Districts

CENSUS BLOCKS

+ Combined Statistical Areas
+ Metropolitan Statiscical Areas
+ Micropolitan Statistical Areas
+ Combined NECTAs

- Metropolitan NECTAS

n NECTAS

+ Mesropolitan Divisions

+ Micropol

+ Consolidated Cicies
+ Subbarrios

_static/minus.png

_static/plus.png

