
Census Geocoder
Release 0.1.0

Insight Industry Inc.

Sep 03, 2021

CONTENTS:

1 Quickstart: Patterns and Best Practices 3
1.1 Installation . 3
1.2 Importing the Library . 3
1.3 Getting Location Data . 4
1.4 Getting Geographical Area Data . 5

2 Using the US Census Geocoder 7
2.1 Introduction . 8

2.1.1 What is Geocoding? . 8
2.1.2 Why the Census Geocoder? . 8
2.1.3 Census Geocoder vs. Alternatives . 9

2.2 Census Geocoder Features . 11
2.3 Overview . 11

2.3.1 How the Census Geocoder Works . 11
2.4 1. Installing the Census Geocoder . 12

2.4.1 Dependencies . 12
2.5 2. Import the Census Geocoder . 12
2.6 3. Geocoding . 13

2.6.1 Getting Location Data . 13
2.6.2 Getting Geographic Area Data . 14
2.6.3 Benchmarks and Vintages . 15
2.6.4 Layers . 18

2.7 4. Working with Results . 31
2.7.1 Shared Methods . 31
2.7.2 Location Data . 32
2.7.3 Geographical Area Data . 32

3 Geographies in the Census Geocoder 35
3.1 Introduction . 35
3.2 Benchmarks, Vintages, and Layers . 36

3.2.1 Benchmarks and Vintages . 36
3.2.2 Layers . 38

3.3 Census Geographic Hierarchies Explained . 51
3.3.1 Core Hierarchy . 52
3.3.2 Secondary Hierarchies . 54
3.3.3 AIANHH Hierarchy . 54

4 API Reference 57
4.1 Locations . 58

4.1.1 Location . 58

i

4.1.2 MatchedAddress . 64
4.2 Geographies . 67

4.2.1 GeographyCollection . 67
4.2.2 GeographicArea . 73
4.2.3 Census Block and Related . 81
4.2.4 Census Block Group . 82
4.2.5 Tribal Census Block Group . 82
4.2.6 Census Tract . 82
4.2.7 Tribal Census Tract . 82
4.2.8 County and Related . 82
4.2.9 State . 82
4.2.10 PUMA and Related . 82
4.2.11 State Legislative District and Related . 83
4.2.12 ZCTA5 and Related . 83
4.2.13 School District-Related . 83
4.2.14 Voting District . 84
4.2.15 Metropolitan Division . 84
4.2.16 Combined Statistical Area . 84
4.2.17 Tribal Subdivision . 84
4.2.18 Census Designated Place . 84
4.2.19 Division . 84
4.2.20 Congressional District and Related . 85
4.2.21 Region . 85
4.2.22 Metropolitan Statistical Area . 85
4.2.23 Micropolitan Statistical Area . 85
4.2.24 Estate . 85
4.2.25 Subbarrio . 86
4.2.26 Consolidated City . 86
4.2.27 Incorporated Place . 86
4.2.28 Alaska Native Regional Corporation . 86
4.2.29 Federal American Indian Reservation . 86
4.2.30 Off-Reservation Trust Land . 86
4.2.31 State American Indian Reservation . 86
4.2.32 Hawaiian Home Land . 87
4.2.33 Alaska Native Village Statistical Area . 87
4.2.34 Oklahoma Tribal Statistical Areas . 87
4.2.35 State Designated Tribal Statistical Areas . 87
4.2.36 Tribal Designated Statistical Areas . 87
4.2.37 American Indian Joint-Use Areas . 87
4.2.38 CombinedNECTA and Related . 88
4.2.39 Urban-related Geographical Areas . 88
4.2.40 Traffic Analysis Zone and Related . 88

4.3 Census Geocoder Internals . 88
4.3.1 Base Entity . 88
4.3.2 Geographic Entity . 90

5 Error Reference 95
5.1 Handling Errors . 95

5.1.1 Stack Traces . 95
5.2 Census Geocoder Errors . 96

5.2.1 CensusGeocoderError (from ValueError) . 96
5.2.2 CensusAPIError (from CensusGeocoderError) . 96
5.2.3 ConfigurationError (from CensusGeocoderError) . 96
5.2.4 UnrecognizedBenchmarkError (from ConfigurationError) 96

ii

5.2.5 UnrecognizedVintageError (from ConfigurationError) 96
5.2.6 MalformedBatchFileError (from ConfigurationError) 96
5.2.7 NoAddressError (from ConfigurationError) . 97
5.2.8 NoFileProvidedError (from ConfigurationError) . 97
5.2.9 BatchSizeTooLargeError (from ConfigurationError) 97

5.3 Census Geocoder Warnings . 97
5.3.1 CensusGeocoderWarning (from UserWarning) . 97

6 Contributing to the Census Geocoder 99
6.1 Design Philosophy . 100
6.2 Style Guide . 100

6.2.1 Basic Conventions . 100
6.2.2 Naming Conventions . 101
6.2.3 Design Conventions . 101
6.2.4 Documentation Conventions . 102

6.3 Dependencies . 103
6.4 Preparing Your Development Environment . 103
6.5 Ideas and Feature Requests . 103
6.6 Testing . 103
6.7 Submitting Pull Requests . 104
6.8 Building Documentation . 104
6.9 Contributors . 104
6.10 References . 104

7 Testing the Census Geocoder 105
7.1 Testing Philosophy . 105
7.2 Test Organization . 106
7.3 Configuring & Running Tests . 106

7.3.1 Installing with the Test Suite . 106
7.3.2 Command-line Options . 106
7.3.3 Running Tests . 106

7.4 Skipping Tests . 107
7.5 Incremental Tests . 107

8 Release History 109
8.1 Release 0.1.0 . 109

9 Glossary 111

10 SQLAthanor License 113

11 Installation 115
11.1 Dependencies . 115

12 Why the Census Geocoder? 117
12.1 Key Census Geocoder Features . 117
12.2 The US Census Geocoder vs Alternatives . 118

13 Hello World and Basic Usage 121
13.1 1. Import the Census Geocoder . 121
13.2 2. Execute a Coding Request . 121

13.2.1 Using a One-line Address . 121
13.2.2 Using a Parametrized Address . 121
13.2.3 Using Batched Addresses . 121
13.2.4 Using Coordinates . 122

iii

13.3 3. Work with the Results . 122
13.3.1 Work with Python Objects . 122

14 Questions and Issues 123

15 Contributing 125

16 Testing 127

17 License 129

18 Indices and tables 131

Python Module Index 133

Index 135

iv

Census Geocoder, Release 0.1.0

(Unofficial) Python Binding for the US Census Geocoder API

Version Compatibility

The US Census Geocoder is designed to be compatible with:

• Python 3.6 or higher

Branch Unit Tests
latest

v.0.5

develop

CONTENTS: 1

https://github.com/insightindustry/census-geocdoer/tree/master
https://travis-ci.com/insightindustry/census-geocoder
https://codecov.io/gh/insightindustry/census-geocoder
http://census-geocoder.readthedocs.io/en/latest/?badge=latest
https://github.com/insightindustry/census-geocoder/tree/v.0.1.0
https://travis-ci.com/insightindustry/census-geocoder
https://codecov.io/gh/insightindustry/census-geocoder
http://census-geocoder.readthedocs.io/en/latest/?badge=v.0.1.0
https://github.com/insightindustry/census-geocoder/tree/develop
https://travis-ci.com/insightindustry/census-geocoder
https://codecov.io/gh/insightindustry/census-geocoder
http://census-geocoder.readthedocs.io/en/latest/?badge=develop

Census Geocoder, Release 0.1.0

2 CONTENTS:

CHAPTER

ONE

QUICKSTART: PATTERNS AND BEST PRACTICES

• Installation

• Importing the Library

• Getting Location Data

• Getting Geographical Area Data

1.1 Installation

To install the US Census Geocoder, just execute:

$ pip install census-geocoder

1.2 Importing the Library

Importing the Census Geocoder is very straightforward. You can either import its components precisely (see API
Reference) or simply import the entire module:

Import the entire module.
import census_geocoder as geocoder

result = geocoder.location.from_address('4600 Silver Hill Rd, Washington, DC 20233')
result = geocoder.geography.from_address('4600 Silver Hill Rd, Washington, DC 20233')

Import precise components.
from census_geocoder import Location, Geography

result = Location.from_address('4600 Silver Hill Rd, Washington, DC 20233')
result = Geography.from_address('4600 Silver Hill Rd, Washington, DC 20233')

3

Census Geocoder, Release 0.1.0

1.3 Getting Location Data

Retrieving data about canonical locations is very straightforward. You have four different ways to get this information,
depending on what information you have about the location you want to geocode:

Single-line Address

Parametrized Address

Coordinates

Batch File

import census_geocoder as geocoder

result = geocoder.location.from_address('4600 Silver Hill Rd, Washington, DC 20233')

See also:

• Location.from_address()

import census_geocoder as geocoder

result = geocoder.location.from_address(street = '4600 Silver Hill Rd',
city = 'Washington',
state = 'DC',
zip_code = '20233')

See also:

• Location.from_address()

import census_geocoder as geocoder

result = geocoder.location.from_coordinates(longitude = -76.92744,
latitude = 38.845985)

See also:

• Location.from_coordinates()

import census_geocoder as geocoder

result = geocoder.location.from_batch(file_ = '/my-csv-file.csv')

Caution: The batch file indicated can have a maximum of 10,000 records.

Warning: While the Census Geocoder API supports CSV, TXT, XLSX, and DAT formats the Census Geocoder
library only supports CSV and TXT formats so as to avoid dependency-bloat (read: Why rely on other libraries to
read XLSX format data?).

See also:

• Location.from_batch()

4 Chapter 1. Quickstart: Patterns and Best Practices

https://geocoding.geo.census.gov/geocoder/

Census Geocoder, Release 0.1.0

1.4 Getting Geographical Area Data

Retrieving data about the geographic areas that contain a given location/place is just as straightforward as getting
location data. In fact, the syntax is almost identical. Just swap out the word 'location' for 'geography' and you’re
done!

Here’s how to do it:

Single-line Address

Parametrized Address

Coordinates

Batch File

import census_geocoder as geocoder

result = geocoder.geography.from_address('4600 Silver Hill Rd, Washington, DC 20233')

See also:

• GeographicArea.from_address()

import census_geocoder as geocoder

result = geocoder.geography.from_address(street = '4600 Silver Hill Rd',
city = 'Washington',
state = 'DC',
zip_code = '20233')

See also:

• GeographicArea.from_address()

import census_geocoder as geocoder

result = geocoder.geography.from_coordinates(longitude = -76.92744,
latitude = 38.845985)

See also:

• GeographicArea.from_coordinates()

import census_geocoder as geocoder

result = geocoder.geography.from_batch(file_ = '/my-csv-file.csv')

Caution: The batch file indicated can have a maximum of 10,000 records.

1.4. Getting Geographical Area Data 5

Census Geocoder, Release 0.1.0

Warning: While the Census Geocoder API supports CSV, TXT, XLSX, and DAT formats the Census Geocoder
library only supports CSV and TXT formats so as to avoid dependency-bloat (read: Why rely on other libraries to
read XLSX format data?).

See also:

• GeographicArea.from_batch()

6 Chapter 1. Quickstart: Patterns and Best Practices

https://geocoding.geo.census.gov/geocoder/

CHAPTER

TWO

USING THE US CENSUS GEOCODER

• Introduction

– What is Geocoding?

– Why the Census Geocoder?

– Census Geocoder vs. Alternatives

• Census Geocoder Features

• Overview

– How the Census Geocoder Works

• 1. Installing the Census Geocoder

– Dependencies

• 2. Import the Census Geocoder

• 3. Geocoding

– Getting Location Data

– Getting Geographic Area Data

– Benchmarks and Vintages

– Layers

• 4. Working with Results

– Shared Methods

– Location Data

– Geographical Area Data

7

Census Geocoder, Release 0.1.0

2.1 Introduction

2.1.1 What is Geocoding?

Hint: The act of determining a specific, canonical location based on some input data.

See also:

• Forward Geocoding

• Reverse Geocoding

What we typically know about a specific location or geographical area is fuzzy. We might know part of the address, or
refer to the address with abbreviations, or describe a general area, etc. It’s ambiguous, fuzzy, and unclear. That makes
getting specific, canonical, and precise data about that geographic location challenging. Which is where the process of
geocoding comes into play.

Geocoding is the process of getting a specific, precise, and canonical determination of a geographical location (a place
or geographic feature) or of a geographical area (encompassing multiple places or geographic features).

A canonical determination of a geographical location or geographical area is defined by the meta-data that is returned for
that location/area. Things like the canonical address, or various characteristics of the geographical area, etc. represent
the “canonical” information about that location / area.

The process of geocoding returns exactly that kind of canonical / official / unambiguous meta-data about one or more
geographical locations and areas based on a set of inputs. Some inputs may be expected to be imprecise or partial
(e.g. addresses, typically used for forward geocoding) while others are expected to be precise but with incomplete
information (e.g. longitude and latitude coordinates used in reverse geocoding).

2.1.2 Why the Census Geocoder?

Geocoding is used for many thing, but the Census Geocoder API in particular is meant to provide the US Census
Bureau’s canonical meta-data about identified locations and areas. This meta-data is then typically used when executing
more in-depth analysis on data published by the US Census Bureau and other departments of the US federal and state
governments.

Because the US government uses a very complicated and overlapping hierarchy of geographic areas, it is essential
when working with US government data to start from the precise identification of the geographic areas and locations
of interest.

But using the Census Geocoder API to get this information is non-trivial in its complexity. That’s both because the API
has limited documentation on the one hand, and because its syntax is non-pythonic and requires extensive familiarity
with the internals of the (complicated) datasets that the US Census Bureau manages/publishes.

The Census Geocoder library is meant to simplify all of that, by providing an easy-to-use, batteries-included, pythonic
wrapper around the Census Geocoder API.

8 Chapter 2. Using the US Census Geocoder

https://geocoding.geo.census.gov/geocoder/
https://geocoding.geo.census.gov/geocoder/
https://geocoding.geo.census.gov/geocoder/

Census Geocoder, Release 0.1.0

2.1.3 Census Geocoder vs. Alternatives

While we’re partial to the US Census Geocoder as our primary means of interacting with the Census Geocoder API,
there are obviously alternatives for you to consider. Some might be better for your use specific use cases, so here’s how
we think about them:

Roll Your Own

Census Geocode

CensusBatchGeocoder

geocoder/geopy

The Census Geocoder API is a straightforward RESTful API. Which means that you can just execute your own HTTP
requests against it, retrieve the JSON results, and work with the resulting data entirely yourself. This is what I did for
years, until I got tired of repeating the same patterns over and over again, and decided to build the Census Geocoder
instead.

For a super-simple use case, probably the most expedient way to do it. But of course, more robust use cases would
require your own scaffolding with built-in retry-logic, object representation, error handling, etc. which becomes non-
trivial.

Why not use a library with batteries included?

Tip: When to use it?

In practice, I find that rolling my own solution is great when it’s an extremely simple use case, or a one-time operation
(e.g. in a Jupyter Notebook) with no business logic to speak of. It’s a “quick-and-dirty” solution, where I’m trading
rapid implementation (yay!) for less flexibility/functionality (boo!).

Considering how easy the Census Geocoder is to use, however, I find that I never really roll my own scaffolding when
working with the Census Geocoder API.

The Census Geocode library is fantastic, and it was what I had used before building the Census Geocoder library.
However, it has a number of significant limitations when compared to the US Census Geocoder:

• Results are returned as-is from the Census Geocoder API. This means that:

– Results are essentially JSON objects represented as dict, which makes interacting with them in Python a
little more cumbersome (one has to navigate nested dict objects).

– Property/field names are as in the original Census data. This means that if you do not have the documen-
tation handy, it is hard to intuitively understand what the data represents.

• The library is licensed under GPL3, which may complicate or limit its utilization in commercial or closed-source
software operating under different (non-GPL) licenses.

• The library requires you to remember / apply a lot of the internals of the Census Geocoder API as-is (e.g. bench-
mark vintages) which is complicated given the API’s limited documentation.

• The library does not support custom layers, and only returns the default set of layers for any request.

The Census Geocoder explicitly addresses all of these concerns:

• The library uses native Python classes to represent results, providing a more pythonic syntax for interacting with
those classes.

• Properties / fields have been renamed to more human-understandable names.

• The Census Geocoder is made available under the more flexible MIT License.

• The library streamlines the configuration of benchmarks and vintages, and provides extensive documentation.

2.1. Introduction 9

https://geocoding.geo.census.gov/geocoder/
https://geocoding.geo.census.gov/geocoder/
https://geocoding.geo.census.gov/geocoder/
https://pypi.org/project/censusgeocode/
https://geocoding.geo.census.gov/geocoder/
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict
https://www.gnu.org/licenses/gpl-3.0.html
https://geocoding.geo.census.gov/geocoder/

Census Geocoder, Release 0.1.0

• The library supports any and all layers supported by the Census Geocoder API.

Tip: When to use it?

Census Geocode has one advantage over the US Census Geocoder: It has a CLI.

I haven’t found much use for a CLI in the work I’ve done with the Census Geocoder API, so have not implemented it
in the US Census Geocoder. Might add it in the future, if there are enough feature requests for it.

Given the above, it may be worth using Census Geocode instead of the Census Geocoder if you expect to be using a
CLI.

The CensusBatchGeocoder is a fantastic library produced by the team at the Los Angeles Times Data Desk. It is
specifically designed to provide a fairly pythonic interface for doing bulk geocoding operations, with great pandas
serialization / de-serialization support.

However, it does have a couple of limitations:

• Stale / Unmaintained? The library does not seem to have been updated since 2017, leading me to believe that it
is stale and unmaintained. There are numerous open issues dating back to 2020, 2018, and 2017 that have seen
no activity.

• No benchmark/vintage/layer support. The library does not support the configuration of benchmarks, vintages,
or layers.

• Limited error handling. The library has somewhat limited error handling, judging by the issues that have been
reported in the repository.

• Optimized for bulk operations. The design of the library has been optimized for geocoding in bulk, which
makes transactional one-off requests cumbersome to execute.

The Census Geocoder is obviously fresh / maintained, and has explicitly implemented robust error handling, and
support for benchmarks, vintages, and layers. It is also designed to support bulk operations and transactional one-off
requests.

Tip: When to use it?

CensusBatchGeocoder has one advantage over the US Census Geocoder: It can serialize results to a pandas
DataFrame seamlessly and simply.

This is a useful feature, and one that I have added/pinned for the US Census Geocoder. If there are enough requests /
up-votes on the issue, I may extend the library with this support in the future.

Given all this, it may be worth using CensusBatchGeocoder instead of the US Census Geocoder if you expect to be
doing a lot of bulk operations using the default benchmark/vintage/layers.

geocoder and geopy are two of my favorite geocoding libraries in the Python ecosystem. They are both inherently
pythonic, elegant, easy to use, and support most of the major geocoding providers out there with a standardized /
unified API.

So at first blush, one might think: Why not just use one of these great libraries to handle requests against the Census
Geocoder API?

Well, the problem is that neither geocoder nor geopy supports the Census Geocoder API as a geocoding provider.
So. . . you can’t just use either of them if you specifically want US Census geocoding data.

Secondly, both the geocoder and geopy libraries are optimized around providing coordinates and feature information
(e.g. matched address), which the Census Geocoder API results go beyond (and are not natively compatible with).

10 Chapter 2. Using the US Census Geocoder

https://geocoding.geo.census.gov/geocoder/
https://pypi.org/project/censusgeocode/
https://geocoding.geo.census.gov/geocoder/
https://github.com/insightindustry/census-geocoder/issues/1
https://pypi.org/project/censusgeocode/
https://github.com/datadesk/python-censusbatchgeocoder
https://pandas.pydata.org/
https://github.com/datadesk/python-censusbatchgeocoder/issues
https://github.com/datadesk/python-censusbatchgeocoder
https://pandas.pydata.org/
https://github.com/insightindustry/census-geocoder/issues/2
https://github.com/datadesk/python-censusbatchgeocoder
https://geocoder.readthedocs.io/
https://geopy.readthedocs.io/en/latest/
https://geocoding.geo.census.gov/geocoder/
https://geocoding.geo.census.gov/geocoder/
https://geocoder.readthedocs.io/
https://geopy.readthedocs.io/en/latest/
https://geocoding.geo.census.gov/geocoder/
https://geocoder.readthedocs.io/
https://geopy.readthedocs.io/en/latest/
https://geocoding.geo.census.gov/geocoder/

Census Geocoder, Release 0.1.0

So really, if you want to interact with the Census Geocoder API, the Census Geocoder library is designed to do exactly
that.

Tip: When to use them?

If you only need relatively simple, coordinate/feature-focused forward or reverse geocoding from a different provider
than the US Census Bureau, and you specifically do not need data from the US Census Bureau.

2.2 Census Geocoder Features

• Easy to adopt. Just install and import the library, and you can be forward geocoding and reverse geocoding with
just two lines of code.

• Extensive documentation. One of the main limitations of the Geocoder API is that its documentation is scattered
across the different datasets released by the Census Bureau, making it hard to navigate and understand. We’ve
tried to fix that.

• Location Search

– Using Geographic Coordinates (reverse geocoding)

– Using a One-line Address

– Using a Parametrized Address

– Using Batched Addresses

• Geography Search

– Using Geographic Coordinates (reverse geocoding)

– Using a One-line Address

– Using a Parametrized Address

– Using Batched Addresses

• Supports all available benchmarks, vintages, and layers.

• Simplified syntax for indicating benchmarks, vintages, and layers.

• No more hard to interpret field names. The library uses simplified (read: human understandable) names for
location and geography properties.

2.3 Overview

2.3.1 How the Census Geocoder Works

The Census Geocoder works with the Census Geocoder API by providing a thin Python wrapper around the APIs
functionality. Rather than having to construct your own HTTP requests against the API itself, you can instead work
with Python objects and functions the way you normally would.

In other words, the process is very straightforward:

2.2. Census Geocoder Features 11

https://geocoding.geo.census.gov/geocoder/
https://geocoding.geo.census.gov/geocoder/

Census Geocoder, Release 0.1.0

1. Install the Census Geocoder library. (see here)

2. Import the geocoder. (see here)

3. Geocode something - either locations or geographies. (see here)

4. Work with your geocoded locations or geographical areas. (see here)

And that’s it! Once you’ve done the steps above, you can easily geocode one-off requests or batch many requests into
a single transaction.

2.4 1. Installing the Census Geocoder

To install the US Census Geocoder, just execute:

$ pip install census-geocoder

2.4.1 Dependencies

• Validator-Collection v1.5.0 or higher

• Backoff-Utils v1.0.1 or higher

• Requests v2.26 or higher

2.5 2. Import the Census Geocoder

Importing the Census Geocoder is very straightforward. You can either import its components precisely (see API
Reference) or simply import the entire module:

Import the entire module.
import census_geocoder as geocoder

result = geocoder.location.from_address('4600 Silver Hill Rd, Washington, DC 20233')
result = geocoder.geography.from_address('4600 Silver Hill Rd, Washington, DC 20233')

Import precise components.
from census_geocoder import Location, Geography

result = Location.from_address('4600 Silver Hill Rd, Washington, DC 20233')
result = Geography.from_address('4600 Silver Hill Rd, Washington, DC 20233')

12 Chapter 2. Using the US Census Geocoder

https://github.com/insightindustry/validator-collection
https://github.com/insightindustry/backoff-utils
https://docs.python-requests.org/

Census Geocoder, Release 0.1.0

2.6 3. Geocoding

Geocoding a location means to retrieve canonical meta-data about that location. Think of it as getting the “official”
details for a given place. Using the Census Geocoder, you can geocode locations given:

• A single-line address (whole or partial)

• A parametrized address where you know its components parts

• A set of longitude and latitude coordinates

• A batch file in CSV or TXT format

However, the Census Geocoder API provides two different sets of meta-data for any canonical location:

• Location Data. Think of it as the canonical address for a given location/place.

• Geographic Area Data. Think of it as canonical information about the (different) areas that contain the given
location/place.

Using the Census Geocoder library you can retrieve both types of information.

Hint: When retrieving geographic area data, you also get location data.

2.6.1 Getting Location Data

Retrieving data about canonical locations is very straightforward. You have four different ways to get this information,
depending on what information you have about the location you want to geocode:

Single-line Address

Parametrized Address

Coordinates

Batch File

import census_geocoder as geocoder

result = geocoder.location.from_address('4600 Silver Hill Rd, Washington, DC 20233')

See also:

• Location.from_address()

import census_geocoder as geocoder

result = geocoder.location.from_address(street = '4600 Silver Hill Rd',
city = 'Washington',
state = 'DC',
zip_code = '20233')

See also:

• Location.from_address()

2.6. 3. Geocoding 13

https://geocoding.geo.census.gov/geocoder/

Census Geocoder, Release 0.1.0

import census_geocoder as geocoder

result = geocoder.location.from_coordinates(longitude = -76.92744,
latitude = 38.845985)

See also:

• Location.from_coordinates()

import census_geocoder as geocoder

result = geocoder.location.from_batch(file_ = '/my-csv-file.csv')

Caution: The batch file indicated can have a maximum of 10,000 records.

Warning: While the Census Geocoder API supports CSV, TXT, XLSX, and DAT formats the Census Geocoder
library only supports CSV and TXT formats so as to avoid dependency-bloat (read: Why rely on other libraries to
read XLSX format data?).

See also:

• Location.from_batch()

2.6.2 Getting Geographic Area Data

Retrieving data about the geographic areas that contain a given location/place is just as straightforward as getting
location data. In fact, the syntax is almost identical. Just swap out the word 'location' for 'geography' and you’re
done!

Here’s how to do it:

Single-line Address

Parametrized Address

Coordinates

Batch File

import census_geocoder as geocoder

result = geocoder.geography.from_address('4600 Silver Hill Rd, Washington, DC 20233')

See also:

• GeographicArea.from_address()

import census_geocoder as geocoder

result = geocoder.geography.from_address(street = '4600 Silver Hill Rd',
city = 'Washington',

(continues on next page)

14 Chapter 2. Using the US Census Geocoder

https://geocoding.geo.census.gov/geocoder/

Census Geocoder, Release 0.1.0

(continued from previous page)

state = 'DC',
zip_code = '20233')

See also:

• GeographicArea.from_address()

import census_geocoder as geocoder

result = geocoder.geography.from_coordinates(longitude = -76.92744,
latitude = 38.845985)

See also:

• GeographicArea.from_coordinates()

import census_geocoder as geocoder

result = geocoder.geography.from_batch(file_ = '/my-csv-file.csv')

Caution: The batch file indicated can have a maximum of 10,000 records.

Warning: While the Census Geocoder API supports CSV, TXT, XLSX, and DAT formats the Census Geocoder
library only supports CSV and TXT formats so as to avoid dependency-bloat (read: Why rely on other libraries to
read XLSX format data?).

See also:

• GeographicArea.from_batch()

2.6.3 Benchmarks and Vintages

The data returned by the Census Geocoder API is different from typical geocoding services, in that it is time-sensitive.
A geocoding service like the Google Maps API or Here.com only cares about the current location. But the US Census
Bureau’s information is inherently linked to the statistical data collected by the US Census Bureau at particular moments
in time.

Thus, when making requests against the Census Geocoder API you are always asking for geographic location data or
geographic area data as of a particular date. You might think “geographies don’t change”, but in actuality they are
constantly evolving. Congressional districts, school districts, town lines, county lines, street names, house numbers,
etc. are all constantly evolving. And to ensure that the statistical data is tied to the locations properly, that alignment
needs to be maintained through two key concepts:

• Benchmarks

• Vintages

The benchmark is the time period when geographic information was snapshotted for use / publication in the Census
Geocoder API. This is typically done twice per year, and represents the “geographic definitions as of the time period
indicated by the benchmark”.

The vintage is the census or survey data that the geographies are linked to. Thus, the geographic identifiers or statistical
data associated with locations or geographic areas within a given benchmark are also linked to a particular vintage

2.6. 3. Geocoding 15

https://geocoding.geo.census.gov/geocoder/
https://geocoding.geo.census.gov/geocoder/
https://geocoding.geo.census.gov/geocoder/
https://geocoding.geo.census.gov/geocoder/
https://geocoding.geo.census.gov/geocoder/

Census Geocoder, Release 0.1.0

of census/survey data. Trying to use those identifiers or statistical data with a different vintage of data may produce
inaccurate results.

The Census Geocoder API supports a variety of benchmarks and vintages, and they are unfortunately poorly docu-
mented and difficult to interpret. Therefore, the Census Geocoder has been designed to streamline and simplify their
usage.

Vintages are only available for a given benchmark. The table below provides guidance on the vintages and benchmarks
supported by the Census Geocoder:

BENCHMARKS
Current Census2020

VINTAGES Current Census2020
Census2020 Census2010
ACS2019
ACS2018
ACS2017
Census2010

When using the Census Geocoder, you can supply the benchmark and vintage directly when executing your geocoding
request:

Single-line Address

Parametrized Address

Coordinates

Batch File

import census_geocoder as geocoder

result = geocoder.location.from_address('4600 Silver Hill Rd, Washington, DC 20233',
benchmark = 'Current',
vintage = 'ACS2019')

result = geocoder.geography.from_address('4600 Silver Hill Rd, Washington, DC 20233',
benchmark = 'Current',
vintage = 'ACS2019')

See also:

• Location.from_address()

• GeographicArea.from_address()

import census_geocoder as geocoder

result = geocoder.location.from_address(street = '4600 Silver Hill Rd',
city = 'Washington',
state = 'DC',
zip_code = '20233',
benchmark = 'Current',
vintage = 'ACS2019')

result = geocoder.geography.from_address(street = '4600 Silver Hill Rd',
city = 'Washington',

(continues on next page)

16 Chapter 2. Using the US Census Geocoder

https://geocoding.geo.census.gov/geocoder/

Census Geocoder, Release 0.1.0

(continued from previous page)

state = 'DC',
zip_code = '20233',
benchmark = 'Current',
vintage = 'ACS2019')

See also:

• Location.from_address()

• GeographicArea.from_address()

import census_geocoder as geocoder

result = geocoder.location.from_coordinates(longitude = -76.92744,
latitude = 38.845985,
benchmark = 'Current',
vintage = 'ACS2019')

result = geocoder.geography.from_coordinates(longitude = -76.92744,
latitude = 38.845985,
benchmark = 'Current',
vintage = 'ACS2019')

See also:

• Location.from_coordinates()

• GeographicArea.from_coordinates()

import census_geocoder as geocoder

result = geocoder.location.from_batch(file_ = '/my-csv-file.csv',
benchmark = 'Current',
vintage = 'ACS2019')

result = geocoder.geography.from_batch(file_ = '/my-csv-file.csv',
benchmark = 'Current',
vintage = 'ACS2019')

See also:

• Location.from_batch()

• GeographicArea.from_batch()

Hint: Several important things to be aware of when it comes to benchmarks and vintages in the Census Geocoder
library:

Unless over-ridden by the CENSUS_GEOCODER_BENCHMARK or CENSUS_GEOCODER_VINTAGE environment variables,
the benchmark and vintage default to 'Current' and 'Current' respectively.

The benchmark and vintage are case-insensitive. This means that you can supply 'Current', 'CURRENT', or
'current' and it will all work the same.

If you want to set a different default benchmark or vintage, you can do so by setting CENSUS_GEOCODER_BENCHMARK
and CENSUS_GEOCODER_VINTAGE environment variables to the defaults you want to use.

2.6. 3. Geocoding 17

Census Geocoder, Release 0.1.0

2.6.4 Layers

When working with the Census Geocoder API (particularly when getting geographic area data), you have the ability
to control which types of geographic area get returned. These types of geographic area are called “layers”.

An example of two different “layers” might be “State” and “County”. These are two different types of geographic area,
one of which (County) may be encompassed by the other (State). In general, geographic areas within the same layer
cannot and do not overlap. However different layers can and do overlap, where one layer (State) may contain multiple
other layers (Counties), or one layer (Metropolitan Statistical Areas) may partially overlap multiple entities within a
different layer (States).

When using the Census Geocoder you can easily specify the layers of data that you want returned. Unless overridden
by the CENSUS_GEOCODER_LAYERS environment variable, the layers returned will always default to 'all'.

Which layers are available is ultimately determined by the vintage of the data you are retrieving. The following repre-
sents the list of layers available in each vintage:

Current

• 2010 Census Public Use Microdata Areas

• 2010 Census PUMAs

• 2010 PUMAs

• Census Public Use Microdata Areas

• Census PUMAs

• PUMAs

• 2020 Census ZIP Code Tabulation Areas

• 2020 Census ZCTAs

• Census ZCTAs

• ZCTAs

• Tribal Census Tracts

• Tribal Block Groups

• Census Tracts

• Census Block Groups

• 2020 Census Blocks

• Census Blocks

• Blocks

• Unified School Districts

• Secondary School Districts

• Elementary School Districts

• Estates

• County Subdivisions

• Subbarrios

• Consolidated Cities

• Incorporated Places

18 Chapter 2. Using the US Census Geocoder

https://geocoding.geo.census.gov/geocoder/

Census Geocoder, Release 0.1.0

• Census Designated Places

• CDPs

• Alaska Native Regional Corporations

• Tribal Subdivisions

• Federal American Indian Reservations

• Off-Reservation Trust Lands

• State American Indian Reservations

• Hawaiian Home Lands

• Alaska Native Village Statistical Areas

• Oklahoma Tribal Statistical Areas

• State Designated Tribal Stastical Areas

• Tribal Designated Statistical Areas

• American Indian Joint-Use Areas

• 116th Congressional Districts

• Congressional Districts

• 2018 State Legislative Districts - Upper

• State Legislative Districts - Upper

• 2018 State Legislative Districts - Lower

• State Legislative Districts - Lower

• Census Divisions

• Divisions

• Census Regions

• Regions

• Combined New England City and Town Areas

• Combined NECTAs

• New England City and Town Area Divisions

• NECTA Divisions

• Metropolitan New England City and Town Areas

• Metropolitan NECTAs

• Micropolitan New England City and Town Areas

• Micropolitan NECTAs

• Combined Statistical Areas

• CSAs

• Metropolitan Divisions

• Metropolitan Statistical Areas

• Micropolitan Statistical Areas

2.6. 3. Geocoding 19

Census Geocoder, Release 0.1.0

• States

• Counties

Census2020

• Urban Growth Areas

• Tribal Census Tracts

• Tribal Block Groups

• Census Tracts

• Census Block Groups

• Block Groups

• Census Blocks

• Blocks

• Unified School Districts

• Secondary School Districts

• Elementary School Districts

• Estates

• County Subdivisions

• Subbarrios

• Consolidated Cities

• Incorporated Places

• Census Designated Places

• CDPs

• Alaska Native Regional Corporations

• Tribal Subdivisions

• Federal American Indian Reservations

• Off-Reservation Trust Lands

• State American Indian Reservations

• Hawaiian Home Lands

• Alaska Native Village Statistical Areas

• Oklahoma Tribal Statistical Areas

• State Designated Tribal Stastical Areas

• Tribal Designated Statistical Areas

• American Indian Joint-Use Areas

• 116th Congressional Districts

• Congressional Districts

• 2018 State Legislative Districts - Upper

• State Legislative Districts - Upper

20 Chapter 2. Using the US Census Geocoder

Census Geocoder, Release 0.1.0

• 2018 State Legislative Districts - Lower

• State Legislative Districts - Lower

• Voting Districts

• Census Divisions

• Divisions

• Census Regions

• Regions

• Combined New England City and Town Areas

• Combined NECTAs

• New England City and Town Area Divisions

• NECTA Divisions

• Metropolitan New England City and Town Areas

• Metropolitan NECTAs

• Micropolitan New England City and Town Areas

• Micropolitan NECTAs

• Combined Statistical Areas

• CSAs

• Metropolitan Divisions

• Metropolitan Statistical Areas

• Micropolitan Statistical Areas

• States

• Counties

• Zip Code Tabulation Areas

• ZCTAs

ACS2019

• 2010 Census Public Use Microdata Areas

• 2010 Census PUMAs

• 2010 PUMAs

• Census Public Use Microdata Areas

• Census PUMAs

• PUMAs

• 2010 Census ZIP Code Tabulation Areas

• 2010 Census ZCTAs

• Census ZCTAs

• ZCTAs

• Tribal Census Tracts

2.6. 3. Geocoding 21

Census Geocoder, Release 0.1.0

• Tribal Block Groups

• Census Tracts

• Census Block Groups

• Unified School Districts

• Secondary School Districts

• Elementary School Districts

• Estates

• County Subdivisions

• Subbarrios

• Consolidated Cities

• Incorporated Places

• Census Designated Places

• CDPs

• Alaska Native Regional Corporations

• Tribal Subdivisions

• Federal American Indian Reservations

• Off-Reservation Trust Lands

• State American Indian Reservations

• Hawaiian Home Lands

• Alaska Native Village Statistical Areas

• Oklahoma Tribal Statistical Areas

• State Designated Tribal Stastical Areas

• Tribal Designated Statistical Areas

• American Indian Joint-Use Areas

• 116th Congressional Districts

• Congressional Districts

• 2018 State Legislative Districts - Upper

• State Legislative Districts - Upper

• 2018 State Legislative Districts - Lower

• State Legislative Districts - Lower

• Census Divisions

• Divisions

• Census Regions

• Regions

• 2010 Census Urbanized Areas

• Census Urbanized Areas

22 Chapter 2. Using the US Census Geocoder

Census Geocoder, Release 0.1.0

• Urbanized Areas

• 2010 Census Urban Clusters

• Census Urban Clusters

• Urban Clusters

• Combined New England City and Town Areas

• Combined NECTAs

• New England City and Town Area Divisions

• NECTA Divisions

• Metropolitan New England City and Town Areas

• Metropolitan NECTAs

• Micropolitan New England City and Town Areas

• Micropolitan NECTAs

• Combined Statistical Areas

• CSAs

• Metropolitan Divisions

• Metropolitan Statistical Areas

• Micropolitan Statistical Areas

• States

• Counties

ACS2018

• 2010 Census Public Use Microdata Areas

• 2010 Census PUMAs

• 2010 PUMAs

• Census Public Use Microdata Areas

• Census PUMAs

• PUMAs

• 2010 Census ZIP Code Tabulation Areas

• 2010 Census ZCTAs

• Census ZCTAs

• ZCTAs

• Tribal Census Tracts

• Tribal Block Groups

• Census Tracts

• Census Block Groups

• Unified School Districts

• Secondary School Districts

2.6. 3. Geocoding 23

Census Geocoder, Release 0.1.0

• Elementary School Districts

• Estates

• County Subdivisions

• Subbarrios

• Consolidated Cities

• Incorporated Places

• Census Designated Places

• CDPs

• Alaska Native Regional Corporations

• Tribal Subdivisions

• Federal American Indian Reservations

• Off-Reservation Trust Lands

• State American Indian Reservations

• Hawaiian Home Lands

• Alaska Native Village Statistical Areas

• Oklahoma Tribal Statistical Areas

• State Designated Tribal Stastical Areas

• Tribal Designated Statistical Areas

• American Indian Joint-Use Areas

• 116th Congressional Districts

• Congressional Districts

• 2018 State Legislative Districts - Upper

• State Legislative Districts - Upper

• 2018 State Legislative Districts - Lower

• State Legislative Districts - Lower

• Census Divisions

• Divisions

• Census Regions

• Regions

• 2010 Census Urbanized Areas

• Census Urbanized Areas

• Urbanized Areas

• 2010 Census Urban Clusters

• Census Urban Clusters

• Urban Clusters

• Combined New England City and Town Areas

24 Chapter 2. Using the US Census Geocoder

Census Geocoder, Release 0.1.0

• Combined NECTAs

• New England City and Town Area Divisions

• NECTA Divisions

• Metropolitan New England City and Town Areas

• Metropolitan NECTAs

• Micropolitan New England City and Town Areas

• Micropolitan NECTAs

• Combined Statistical Areas

• CSAs

• Metropolitan Divisions

• Metropolitan Statistical Areas

• Micropolitan Statistical Areas

• States

• Counties

ACS2017

• 2010 Census Public Use Microdata Areas

• 2010 Census PUMAs

• 2010 PUMAs

• Census Public Use Microdata Areas

• Census PUMAs

• PUMAs

• 2010 Census ZIP Code Tabulation Areas

• 2010 Census ZCTAs

• Census ZCTAs

• ZCTAs

• Tribal Census Tracts

• Tribal Block Groups

• Census Tracts

• Census Block Groups

• Unified School Districts

• Secondary School Districts

• Elementary School Districts

• Estates

• County Subdivisions

• Subbarrios

• Consolidated Cities

2.6. 3. Geocoding 25

Census Geocoder, Release 0.1.0

• Incorporated Places

• Census Designated Places

• CDPs

• Alaska Native Regional Corporations

• Tribal Subdivisions

• Federal American Indian Reservations

• Off-Reservation Trust Lands

• State American Indian Reservations

• Hawaiian Home Lands

• Alaska Native Village Statistical Areas

• Oklahoma Tribal Statistical Areas

• State Designated Tribal Stastical Areas

• Tribal Designated Statistical Areas

• American Indian Joint-Use Areas

• 115th Congressional Districts

• Congressional Districts

• 2016 State Legislative Districts - Upper

• State Legislative Districts - Upper

• 2016 State Legislative Districts - Lower

• State Legislative Districts - Lower

• Census Divisions

• Divisions

• Census Regions

• Regions

• 2010 Census Urbanized Areas

• Census Urbanized Areas

• Urbanized Areas

• 2010 Census Urban Clusters

• Census Urban Clusters

• Urban Clusters

• Combined New England City and Town Areas

• Combined NECTAs

• New England City and Town Area Divisions

• NECTA Divisions

• Metropolitan New England City and Town Areas

• Metropolitan NECTAs

26 Chapter 2. Using the US Census Geocoder

Census Geocoder, Release 0.1.0

• Micropolitan New England City and Town Areas

• Micropolitan NECTAs

• Combined Statistical Areas

• CSAs

• Metropolitan Divisions

• Metropolitan Statistical Areas

• Micropolitan Statistical Areas

• States

• Counties

Census2010

• Public Use Microdata Areas

• PUMAs

• Traffic Analysis Districts

• TADs

• Traffic Analysis Zones

• TAZs

• Urban Growth Areas

• ZIP Code Tabulation Areas

• Zip Code Tabulation Areas

• ZCTAs

• Tribal Census Tracts

• Tribal Block Groups

• Census Tracts

• Census Block Groups

• Census Blocks

• Blocks

• Unified School Districts

• Secondary School Districts

• Elementary School Districts

• Estates

• County Subdivisions

• Subbarrios

• Consolidated Cities

• Incorporated Places

• Census Designated Places

• CDPs

2.6. 3. Geocoding 27

Census Geocoder, Release 0.1.0

• Alaska Native Regional Corporations

• Tribal Subdivisions

• Federal American Indian Reservations

• Off-Reservation Trust Lands

• State American Indian Reservations

• Hawaiian Home Lands

• Alaska Native Village Statistical Areas

• Oklahoma Tribal Statistical Areas

• State Designated Tribal Stastical Areas

• Tribal Designated Statistical Areas

• American Indian Joint-Use Areas

• 113th Congressional Districts

• 111th Congressional Districts

• 2012 State Legislative Districts - Upper

• 2012 State Legislative Districts - Lower

• 2010 State Legislative Districts - Upper

• 2010 State Legislative Districts - Lower

• Voting Districts

• Census Divisions

• Divisions

• Census Regions

• Regions

• Urbanized Areas

• Urban Clusters

• Combined New England City and Town Areas

• Combined NECTAs

• New England City and Town Area Divisions

• NECTA Divisions

• Metropolitan New England City and Town Areas

• Metropolitan NECTAs

• Micropolitan New England City and Town Areas

• Micropolitan NECTAs

• Combined Statistical Areas

• CSAs

• Metropolitan Divisions

• Metropolitan Statistical Areas

28 Chapter 2. Using the US Census Geocoder

Census Geocoder, Release 0.1.0

• Micropolitan Statistical Areas

• States

• Counties

Note: You may notice that there are (logical) duplicate layers in the lists above, for example “2010 Census PUMAs”
and “2010 Census Public Use Microdata Areas”. This is because there are multiple ways that users of Census data may
refer to particular layers in their work. This duplication is purely for the convenience of Census Geocoder users, since
the Census Geocoder API actually uses numerical identifiers for the layers returned.

When geocoding data, you can simply supply the layers you want using the layers keyword argument as below:

Single-line Address

Parametrized Address

Coordinates

Batch File

import census_geocoder as geocoder

result = geocoder.location.from_address('4600 Silver Hill Rd, Washington, DC 20233',
benchmark = 'Current',
vintage = 'ACS2019',
layers = 'Census Tracts, States, CDPs, Divisions

→˓')

result = geocoder.geography.from_address('4600 Silver Hill Rd, Washington, DC 20233',
benchmark = 'Current',
vintage = 'ACS2019',
layers = 'Census Tracts, States, CDPs, Divisions

→˓')

See also:

• Location.from_address()

• GeographicArea.from_address()

import census_geocoder as geocoder

result = geocoder.location.from_address(street = '4600 Silver Hill Rd',
city = 'Washington',
state = 'DC',
zip_code = '20233',
benchmark = 'Current',
vintage = 'ACS2019',
layers = 'Census Tracts, States, CDPs, Divisions

→˓')

result = geocoder.geography.from_address(street = '4600 Silver Hill Rd',
city = 'Washington',
state = 'DC',
zip_code = '20233',
benchmark = 'Current',

(continues on next page)

2.6. 3. Geocoding 29

https://geocoding.geo.census.gov/geocoder/

Census Geocoder, Release 0.1.0

(continued from previous page)

vintage = 'ACS2019',
layers = 'Census Tracts, States, CDPs, Divisions

→˓')

See also:

• Location.from_address()

• GeographicArea.from_address()

import census_geocoder as geocoder

result = geocoder.location.from_coordinates(longitude = -76.92744,
latitude = 38.845985,
benchmark = 'Current',
vintage = 'ACS2019',
layers = 'Census Tracts, States, CDPs,␣

→˓Divisions')

result = geocoder.geography.from_coordinates(longitude = -76.92744,
latitude = 38.845985,
benchmark = 'Current',
vintage = 'ACS2019',
layers = 'Census Tracts, States, CDPs,␣

→˓Divisions')

See also:

• Location.from_coordinates()

• GeographicArea.from_coordinates()

import census_geocoder as geocoder

result = geocoder.location.from_batch(file_ = '/my-csv-file.csv',
benchmark = 'Current',
vintage = 'ACS2019')

result = geocoder.geography.from_batch(file_ = '/my-csv-file.csv',
benchmark = 'Current',
vintage = 'ACS2019',
layers = 'Census Tracts, States, CDPs, Divisions')

See also:

• Location.from_batch()

• GeographicArea.from_batch()

Hint: When using the Census Geocoder to return geographic area data, you can request multiple layers worth of
data by passing them in a comma-delimited string. This will return separate data for each layer indicated. The comma-
delimited string can include white-space for easy readability, which means that the following two values are considered
identical:

• layers = 'Census Tracts, States, CDPs, Divisions'

• layers = 'Census Tracts,States,CDPs,Divisions'

30 Chapter 2. Using the US Census Geocoder

Census Geocoder, Release 0.1.0

To retrieve all available layers that have data for a given location, you can submit 'all'. Unless you have set the
CENSUS_GEOCODER_LAYERS environment variable to a different value, 'all' is the default set of layers that will be
returned.

Note that layer names in the Census Geocoder are case-insensitive.

2.7 4. Working with Results

Locations vs Geographical Areas?

If all geographical area data is contained within a Location, why differentiate between working with location data
and working with geographical area data at all?

The answer is two-fold: use case and performance. The act of geocoding is very simple and occurs at the level of
a given Location. This process is done as soon as the Census Geocoder API has determined a canonical location
(a MatchedAddress). Typically, use cases that need that geocoded canonical address require it to be very fast, and
that’s how the Census Geocoder API has been optimized.

However, pulling geographical area data relies on first determining the canonical location. And then, it has to pull
a set of additional geographical area meta-data for that canonical location’s geographical surroundings. That takes
time, and the more layers you request, the longer that process will take.

Therefore, both the Census Geocoder API and the Census Geocoder library differentiate between the two so that
you can use the more-performant location-only API calls when appropriate, and the less-performant but more robust
geographical area API calls as needed.

Now that you’ve geocoded some data using the Census Geocoder, you probably want to work with your data. Well,
that’s pretty easy since the Census Geocoder returns native Python objects containing your location or geographical
area data.

2.7.1 Shared Methods

Most of what you will do with your results is read properties from them so as to consume or use the canonical loca-
tion/geographic meta-data in your application. However, there are a number of methods that are shared between both
location data and geographic area data that may prove helpful:

inspect(as_census_fields=False)

Parameters as_census_fields (bool) – If True, returns the properties using the Census field
name rather than the Census Geocoder (user-friendly) property name. Defaults to False.

Returns a list of the properties that are populated with values in the object.

Return type list of str

to_dict()
Serializes the data for the location/geographic area into a dict that conforms directly to the output from the
Census Geocoder API.

Return type dict

2.7. 4. Working with Results 31

https://geocoding.geo.census.gov/geocoder/
https://geocoding.geo.census.gov/geocoder/
https://geocoding.geo.census.gov/geocoder/
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#dict
https://geocoding.geo.census.gov/geocoder/
https://docs.python.org/3.6/library/stdtypes.html#dict

Census Geocoder, Release 0.1.0

to_json()
Serializes the data for the location/geographic area into a str containing a JSON object that conforms directly
to the output from the Census Geocoder API.

Return type str

2.7.2 Location Data

When working with location data, there are two principle sets of meta-data made available:

• Input. This is the input that was submitted to the Census Geocoder API, and it includes:

– The address that you submitted.

– The benchmark requested.

– The vintage requested.

• Matched Addresses. This is a collection of addresses that the Census Geocoder API returned as the canonical
addresses for your inputs.

Each matched address exposes its key meta-data, including:

• The address components in a term:parametrized <parametrized address> form.

• The address in a single-line form.

• The Tigerline identifier information for the address.

• The side of the street where the address can be found, per the Tigerline data.

See also:

• Location

• MatchedAddress

2.7.3 Geographical Area Data

Geographical area data is always returned within the context of a MatchedAddress instance, which itself is always
contained within a Location instance. That matched address will have a .geographies property, which will contain
a GeographyCollection. That .geographies property is what contains the detailed geographical area meta-data
for all geographical areas returned in response to your API request.

Each layer requested is contained in a property of the GeographyCollection. For example, the relevant regions
would be contained in the .regions property, while the relevant census tracts would be contained in the .tracts
property.

See also:

For a full list of the properties/layers that are available within a GeographyCollection, please see the detailed API
reference:

• GeographyCollection

If a layer is not requested (or is irrelevant for a given benchmark / vintage), then its corresponding property in the
GeographyCollection will be None.

Within each layer/property, you will find a collection of Geography instances (technically, layer-specific sub-class
instances). Each of these instances represents a geographical area returned by the Census Geocoder API, and their
properties will contain the meta-data returned by that API.

32 Chapter 2. Using the US Census Geocoder

https://docs.python.org/3.6/library/stdtypes.html#str
https://geocoding.geo.census.gov/geocoder/
https://docs.python.org/3.6/library/stdtypes.html#str
https://geocoding.geo.census.gov/geocoder/
https://geocoding.geo.census.gov/geocoder/
https://docs.python.org/3.6/library/constants.html#None
https://geocoding.geo.census.gov/geocoder/

Census Geocoder, Release 0.1.0

Because different types of geographical area return different meta-data, there is a useful .inspect()method that will
tell you what meta-data properties are available / have data.

The most universal properties (and the ones that are going to prove most useful when working with other Census Bureau
datasets) are:

• .geoid which contains the GEOID (unique consolidated identifier for the geographical area)

• .name which contains the human-readable name of the geographical area

• .geography_type which contains a human-readable label for the instances’s geographical area/layer type

• .functional_status which contains a human-readable indication of the geographical area’s functional status

See also:

• GeographyCollection

• Geography

2.7. 4. Working with Results 33

Census Geocoder, Release 0.1.0

34 Chapter 2. Using the US Census Geocoder

CHAPTER

THREE

GEOGRAPHIES IN THE CENSUS GEOCODER

• Introduction

• Benchmarks, Vintages, and Layers

– Benchmarks and Vintages

– Layers

• Census Geographic Hierarchies Explained

– Core Hierarchy

– Secondary Hierarchies

∗ Places

– AIANHH Hierarchy

3.1 Introduction

We like to think that geography is simple. There’s a place, and that place has some borders, and it’s all easy to under-
stand. Intuitive, right?

Wrong.

Geography is actually extremely complicated, because it is by its very nature ambiguous. The only objectively unam-
biguous definition of a geographic area is a pair of longitude/latitude coordinates. When you start considering ways
in which geographic areas overlap or roll into a hierarchy, it gets even more complicated because then you need to
consider how each geographic area gets defined and overlaps.

Then, when you consider how such geographic hierarchies map to data (which itself represents a point-in-time), it gets
even more complicated. That’s because geographic definitions change all the time. Street names change, town names
change, borders shift, etc.

And the Census Geocoder API and the US Census Bureau data that it corresponds to has to inherently account for all
of these complexities. Which makes the way the Census Geocoder API handles geographic areas complicated.

35

https://geocoding.geo.census.gov/geocoder/
https://geocoding.geo.census.gov/geocoder/

Census Geocoder, Release 0.1.0

3.2 Benchmarks, Vintages, and Layers

3.2.1 Benchmarks and Vintages

The data returned by the Census Geocoder API is different from typical geocoding services, in that it is time-sensitive.
A geocoding service like the Google Maps API or Here.com only cares about the current location. But the US Census
Bureau’s information is inherently linked to the statistical data collected by the US Census Bureau at particular moments
in time.

Thus, when making requests against the Census Geocoder API you are always asking for geographic location data or
geographic area data as of a particular date. You might think “geographies don’t change”, but in actuality they are
constantly evolving. Congressional districts, school districts, town lines, county lines, street names, house numbers,
etc. are all constantly evolving. And to ensure that the statistical data is tied to the locations properly, that alignment
needs to be maintained through two key concepts:

• Benchmarks

• Vintages

The benchmark is the time period when geographic information was snapshotted for use / publication in the Census
Geocoder API. This is typically done twice per year, and represents the “geographic definitions as of the time period
indicated by the benchmark”.

The vintage is the census or survey data that the geographies are linked to. Thus, the geographic identifiers or statistical
data associated with locations or geographic areas within a given benchmark are also linked to a particular vintage
of census/survey data. Trying to use those identifiers or statistical data with a different vintage of data may produce
inaccurate results.

The Census Geocoder API supports a variety of benchmarks and vintages, and they are unfortunately poorly docu-
mented and difficult to interpret. Therefore, the Census Geocoder has been designed to streamline and simplify their
usage.

Vintages are only available for a given benchmark. The table below provides guidance on the vintages and benchmarks
supported by the Census Geocoder:

BENCHMARKS
Current Census2020

VINTAGES Current Census2020
Census2020 Census2010
ACS2019
ACS2018
ACS2017
Census2010

When using the Census Geocoder, you can supply the benchmark and vintage directly when executing your geocoding
request:

Single-line Address

Parametrized Address

Coordinates

Batch File

import census_geocoder as geocoder

(continues on next page)

36 Chapter 3. Geographies in the Census Geocoder

https://geocoding.geo.census.gov/geocoder/
https://geocoding.geo.census.gov/geocoder/
https://geocoding.geo.census.gov/geocoder/
https://geocoding.geo.census.gov/geocoder/
https://geocoding.geo.census.gov/geocoder/

Census Geocoder, Release 0.1.0

(continued from previous page)

result = geocoder.location.from_address('4600 Silver Hill Rd, Washington, DC 20233',
benchmark = 'Current',
vintage = 'ACS2019')

result = geocoder.geography.from_address('4600 Silver Hill Rd, Washington, DC 20233',
benchmark = 'Current',
vintage = 'ACS2019')

See also:

• Location.from_address()

• GeographicArea.from_address()

import census_geocoder as geocoder

result = geocoder.location.from_address(street = '4600 Silver Hill Rd',
city = 'Washington',
state = 'DC',
zip_code = '20233',
benchmark = 'Current',
vintage = 'ACS2019')

result = geocoder.geography.from_address(street = '4600 Silver Hill Rd',
city = 'Washington',
state = 'DC',
zip_code = '20233',
benchmark = 'Current',
vintage = 'ACS2019')

See also:

• Location.from_address()

• GeographicArea.from_address()

import census_geocoder as geocoder

result = geocoder.location.from_coordinates(longitude = -76.92744,
latitude = 38.845985,
benchmark = 'Current',
vintage = 'ACS2019')

result = geocoder.geography.from_coordinates(longitude = -76.92744,
latitude = 38.845985,
benchmark = 'Current',
vintage = 'ACS2019')

See also:

• Location.from_coordinates()

• GeographicArea.from_coordinates()

import census_geocoder as geocoder

(continues on next page)

3.2. Benchmarks, Vintages, and Layers 37

Census Geocoder, Release 0.1.0

(continued from previous page)

result = geocoder.location.from_batch(file_ = '/my-csv-file.csv',
benchmark = 'Current',
vintage = 'ACS2019')

result = geocoder.geography.from_batch(file_ = '/my-csv-file.csv',
benchmark = 'Current',
vintage = 'ACS2019')

See also:

• Location.from_batch()

• GeographicArea.from_batch()

Hint: Several important things to be aware of when it comes to benchmarks and vintages in the Census Geocoder
library:

Unless over-ridden by the CENSUS_GEOCODER_BENCHMARK or CENSUS_GEOCODER_VINTAGE environment variables,
the benchmark and vintage default to 'Current' and 'Current' respectively.

The benchmark and vintage are case-insensitive. This means that you can supply 'Current', 'CURRENT', or
'current' and it will all work the same.

If you want to set a different default benchmark or vintage, you can do so by setting CENSUS_GEOCODER_BENCHMARK
and CENSUS_GEOCODER_VINTAGE environment variables to the defaults you want to use.

3.2.2 Layers

When working with the Census Geocoder API (particularly when getting geographic area data), you have the ability
to control which types of geographic area get returned. These types of geographic area are called “layers”.

An example of two different “layers” might be “State” and “County”. These are two different types of geographic area,
one of which (County) may be encompassed by the other (State). In general, geographic areas within the same layer
cannot and do not overlap. However different layers can and do overlap, where one layer (State) may contain multiple
other layers (Counties), or one layer (Metropolitan Statistical Areas) may partially overlap multiple entities within a
different layer (States).

When using the Census Geocoder you can easily specify the layers of data that you want returned. Unless overridden
by the CENSUS_GEOCODER_LAYERS environment variable, the layers returned will always default to 'all'.

Which layers are available is ultimately determined by the vintage of the data you are retrieving. The following repre-
sents the list of layers available in each vintage:

Current

• 2010 Census Public Use Microdata Areas

• 2010 Census PUMAs

• 2010 PUMAs

• Census Public Use Microdata Areas

• Census PUMAs

• PUMAs

• 2020 Census ZIP Code Tabulation Areas

38 Chapter 3. Geographies in the Census Geocoder

https://geocoding.geo.census.gov/geocoder/

Census Geocoder, Release 0.1.0

• 2020 Census ZCTAs

• Census ZCTAs

• ZCTAs

• Tribal Census Tracts

• Tribal Block Groups

• Census Tracts

• Census Block Groups

• 2020 Census Blocks

• Census Blocks

• Blocks

• Unified School Districts

• Secondary School Districts

• Elementary School Districts

• Estates

• County Subdivisions

• Subbarrios

• Consolidated Cities

• Incorporated Places

• Census Designated Places

• CDPs

• Alaska Native Regional Corporations

• Tribal Subdivisions

• Federal American Indian Reservations

• Off-Reservation Trust Lands

• State American Indian Reservations

• Hawaiian Home Lands

• Alaska Native Village Statistical Areas

• Oklahoma Tribal Statistical Areas

• State Designated Tribal Stastical Areas

• Tribal Designated Statistical Areas

• American Indian Joint-Use Areas

• 116th Congressional Districts

• Congressional Districts

• 2018 State Legislative Districts - Upper

• State Legislative Districts - Upper

• 2018 State Legislative Districts - Lower

3.2. Benchmarks, Vintages, and Layers 39

Census Geocoder, Release 0.1.0

• State Legislative Districts - Lower

• Census Divisions

• Divisions

• Census Regions

• Regions

• Combined New England City and Town Areas

• Combined NECTAs

• New England City and Town Area Divisions

• NECTA Divisions

• Metropolitan New England City and Town Areas

• Metropolitan NECTAs

• Micropolitan New England City and Town Areas

• Micropolitan NECTAs

• Combined Statistical Areas

• CSAs

• Metropolitan Divisions

• Metropolitan Statistical Areas

• Micropolitan Statistical Areas

• States

• Counties

Census2020

• Urban Growth Areas

• Tribal Census Tracts

• Tribal Block Groups

• Census Tracts

• Census Block Groups

• Block Groups

• Census Blocks

• Blocks

• Unified School Districts

• Secondary School Districts

• Elementary School Districts

• Estates

• County Subdivisions

• Subbarrios

• Consolidated Cities

40 Chapter 3. Geographies in the Census Geocoder

Census Geocoder, Release 0.1.0

• Incorporated Places

• Census Designated Places

• CDPs

• Alaska Native Regional Corporations

• Tribal Subdivisions

• Federal American Indian Reservations

• Off-Reservation Trust Lands

• State American Indian Reservations

• Hawaiian Home Lands

• Alaska Native Village Statistical Areas

• Oklahoma Tribal Statistical Areas

• State Designated Tribal Stastical Areas

• Tribal Designated Statistical Areas

• American Indian Joint-Use Areas

• 116th Congressional Districts

• Congressional Districts

• 2018 State Legislative Districts - Upper

• State Legislative Districts - Upper

• 2018 State Legislative Districts - Lower

• State Legislative Districts - Lower

• Voting Districts

• Census Divisions

• Divisions

• Census Regions

• Regions

• Combined New England City and Town Areas

• Combined NECTAs

• New England City and Town Area Divisions

• NECTA Divisions

• Metropolitan New England City and Town Areas

• Metropolitan NECTAs

• Micropolitan New England City and Town Areas

• Micropolitan NECTAs

• Combined Statistical Areas

• CSAs

• Metropolitan Divisions

3.2. Benchmarks, Vintages, and Layers 41

Census Geocoder, Release 0.1.0

• Metropolitan Statistical Areas

• Micropolitan Statistical Areas

• States

• Counties

• Zip Code Tabulation Areas

• ZCTAs

ACS2019

• 2010 Census Public Use Microdata Areas

• 2010 Census PUMAs

• 2010 PUMAs

• Census Public Use Microdata Areas

• Census PUMAs

• PUMAs

• 2010 Census ZIP Code Tabulation Areas

• 2010 Census ZCTAs

• Census ZCTAs

• ZCTAs

• Tribal Census Tracts

• Tribal Block Groups

• Census Tracts

• Census Block Groups

• Unified School Districts

• Secondary School Districts

• Elementary School Districts

• Estates

• County Subdivisions

• Subbarrios

• Consolidated Cities

• Incorporated Places

• Census Designated Places

• CDPs

• Alaska Native Regional Corporations

• Tribal Subdivisions

• Federal American Indian Reservations

• Off-Reservation Trust Lands

• State American Indian Reservations

42 Chapter 3. Geographies in the Census Geocoder

Census Geocoder, Release 0.1.0

• Hawaiian Home Lands

• Alaska Native Village Statistical Areas

• Oklahoma Tribal Statistical Areas

• State Designated Tribal Stastical Areas

• Tribal Designated Statistical Areas

• American Indian Joint-Use Areas

• 116th Congressional Districts

• Congressional Districts

• 2018 State Legislative Districts - Upper

• State Legislative Districts - Upper

• 2018 State Legislative Districts - Lower

• State Legislative Districts - Lower

• Census Divisions

• Divisions

• Census Regions

• Regions

• 2010 Census Urbanized Areas

• Census Urbanized Areas

• Urbanized Areas

• 2010 Census Urban Clusters

• Census Urban Clusters

• Urban Clusters

• Combined New England City and Town Areas

• Combined NECTAs

• New England City and Town Area Divisions

• NECTA Divisions

• Metropolitan New England City and Town Areas

• Metropolitan NECTAs

• Micropolitan New England City and Town Areas

• Micropolitan NECTAs

• Combined Statistical Areas

• CSAs

• Metropolitan Divisions

• Metropolitan Statistical Areas

• Micropolitan Statistical Areas

• States

3.2. Benchmarks, Vintages, and Layers 43

Census Geocoder, Release 0.1.0

• Counties

ACS2018

• 2010 Census Public Use Microdata Areas

• 2010 Census PUMAs

• 2010 PUMAs

• Census Public Use Microdata Areas

• Census PUMAs

• PUMAs

• 2010 Census ZIP Code Tabulation Areas

• 2010 Census ZCTAs

• Census ZCTAs

• ZCTAs

• Tribal Census Tracts

• Tribal Block Groups

• Census Tracts

• Census Block Groups

• Unified School Districts

• Secondary School Districts

• Elementary School Districts

• Estates

• County Subdivisions

• Subbarrios

• Consolidated Cities

• Incorporated Places

• Census Designated Places

• CDPs

• Alaska Native Regional Corporations

• Tribal Subdivisions

• Federal American Indian Reservations

• Off-Reservation Trust Lands

• State American Indian Reservations

• Hawaiian Home Lands

• Alaska Native Village Statistical Areas

• Oklahoma Tribal Statistical Areas

• State Designated Tribal Stastical Areas

• Tribal Designated Statistical Areas

44 Chapter 3. Geographies in the Census Geocoder

Census Geocoder, Release 0.1.0

• American Indian Joint-Use Areas

• 116th Congressional Districts

• Congressional Districts

• 2018 State Legislative Districts - Upper

• State Legislative Districts - Upper

• 2018 State Legislative Districts - Lower

• State Legislative Districts - Lower

• Census Divisions

• Divisions

• Census Regions

• Regions

• 2010 Census Urbanized Areas

• Census Urbanized Areas

• Urbanized Areas

• 2010 Census Urban Clusters

• Census Urban Clusters

• Urban Clusters

• Combined New England City and Town Areas

• Combined NECTAs

• New England City and Town Area Divisions

• NECTA Divisions

• Metropolitan New England City and Town Areas

• Metropolitan NECTAs

• Micropolitan New England City and Town Areas

• Micropolitan NECTAs

• Combined Statistical Areas

• CSAs

• Metropolitan Divisions

• Metropolitan Statistical Areas

• Micropolitan Statistical Areas

• States

• Counties

ACS2017

• 2010 Census Public Use Microdata Areas

• 2010 Census PUMAs

• 2010 PUMAs

3.2. Benchmarks, Vintages, and Layers 45

Census Geocoder, Release 0.1.0

• Census Public Use Microdata Areas

• Census PUMAs

• PUMAs

• 2010 Census ZIP Code Tabulation Areas

• 2010 Census ZCTAs

• Census ZCTAs

• ZCTAs

• Tribal Census Tracts

• Tribal Block Groups

• Census Tracts

• Census Block Groups

• Unified School Districts

• Secondary School Districts

• Elementary School Districts

• Estates

• County Subdivisions

• Subbarrios

• Consolidated Cities

• Incorporated Places

• Census Designated Places

• CDPs

• Alaska Native Regional Corporations

• Tribal Subdivisions

• Federal American Indian Reservations

• Off-Reservation Trust Lands

• State American Indian Reservations

• Hawaiian Home Lands

• Alaska Native Village Statistical Areas

• Oklahoma Tribal Statistical Areas

• State Designated Tribal Stastical Areas

• Tribal Designated Statistical Areas

• American Indian Joint-Use Areas

• 115th Congressional Districts

• Congressional Districts

• 2016 State Legislative Districts - Upper

• State Legislative Districts - Upper

46 Chapter 3. Geographies in the Census Geocoder

Census Geocoder, Release 0.1.0

• 2016 State Legislative Districts - Lower

• State Legislative Districts - Lower

• Census Divisions

• Divisions

• Census Regions

• Regions

• 2010 Census Urbanized Areas

• Census Urbanized Areas

• Urbanized Areas

• 2010 Census Urban Clusters

• Census Urban Clusters

• Urban Clusters

• Combined New England City and Town Areas

• Combined NECTAs

• New England City and Town Area Divisions

• NECTA Divisions

• Metropolitan New England City and Town Areas

• Metropolitan NECTAs

• Micropolitan New England City and Town Areas

• Micropolitan NECTAs

• Combined Statistical Areas

• CSAs

• Metropolitan Divisions

• Metropolitan Statistical Areas

• Micropolitan Statistical Areas

• States

• Counties

Census2010

• Public Use Microdata Areas

• PUMAs

• Traffic Analysis Districts

• TADs

• Traffic Analysis Zones

• TAZs

• Urban Growth Areas

• ZIP Code Tabulation Areas

3.2. Benchmarks, Vintages, and Layers 47

Census Geocoder, Release 0.1.0

• Zip Code Tabulation Areas

• ZCTAs

• Tribal Census Tracts

• Tribal Block Groups

• Census Tracts

• Census Block Groups

• Census Blocks

• Blocks

• Unified School Districts

• Secondary School Districts

• Elementary School Districts

• Estates

• County Subdivisions

• Subbarrios

• Consolidated Cities

• Incorporated Places

• Census Designated Places

• CDPs

• Alaska Native Regional Corporations

• Tribal Subdivisions

• Federal American Indian Reservations

• Off-Reservation Trust Lands

• State American Indian Reservations

• Hawaiian Home Lands

• Alaska Native Village Statistical Areas

• Oklahoma Tribal Statistical Areas

• State Designated Tribal Stastical Areas

• Tribal Designated Statistical Areas

• American Indian Joint-Use Areas

• 113th Congressional Districts

• 111th Congressional Districts

• 2012 State Legislative Districts - Upper

• 2012 State Legislative Districts - Lower

• 2010 State Legislative Districts - Upper

• 2010 State Legislative Districts - Lower

• Voting Districts

48 Chapter 3. Geographies in the Census Geocoder

Census Geocoder, Release 0.1.0

• Census Divisions

• Divisions

• Census Regions

• Regions

• Urbanized Areas

• Urban Clusters

• Combined New England City and Town Areas

• Combined NECTAs

• New England City and Town Area Divisions

• NECTA Divisions

• Metropolitan New England City and Town Areas

• Metropolitan NECTAs

• Micropolitan New England City and Town Areas

• Micropolitan NECTAs

• Combined Statistical Areas

• CSAs

• Metropolitan Divisions

• Metropolitan Statistical Areas

• Micropolitan Statistical Areas

• States

• Counties

Note: You may notice that there are (logical) duplicate layers in the lists above, for example “2010 Census PUMAs”
and “2010 Census Public Use Microdata Areas”. This is because there are multiple ways that users of Census data may
refer to particular layers in their work. This duplication is purely for the convenience of Census Geocoder users, since
the Census Geocoder API actually uses numerical identifiers for the layers returned.

When geocoding data, you can simply supply the layers you want using the layers keyword argument as below:

Single-line Address

Parametrized Address

Coordinates

Batch File

import census_geocoder as geocoder

result = geocoder.location.from_address('4600 Silver Hill Rd, Washington, DC 20233',
benchmark = 'Current',
vintage = 'ACS2019',
layers = 'Census Tracts, States, CDPs, Divisions

→˓')
(continues on next page)

3.2. Benchmarks, Vintages, and Layers 49

https://geocoding.geo.census.gov/geocoder/

Census Geocoder, Release 0.1.0

(continued from previous page)

result = geocoder.geography.from_address('4600 Silver Hill Rd, Washington, DC 20233',
benchmark = 'Current',
vintage = 'ACS2019',
layers = 'Census Tracts, States, CDPs, Divisions

→˓')

See also:

• Location.from_address()

• GeographicArea.from_address()

import census_geocoder as geocoder

result = geocoder.location.from_address(street = '4600 Silver Hill Rd',
city = 'Washington',
state = 'DC',
zip_code = '20233',
benchmark = 'Current',
vintage = 'ACS2019',
layers = 'Census Tracts, States, CDPs, Divisions

→˓')

result = geocoder.geography.from_address(street = '4600 Silver Hill Rd',
city = 'Washington',
state = 'DC',
zip_code = '20233',
benchmark = 'Current',
vintage = 'ACS2019',
layers = 'Census Tracts, States, CDPs, Divisions

→˓')

See also:

• Location.from_address()

• GeographicArea.from_address()

import census_geocoder as geocoder

result = geocoder.location.from_coordinates(longitude = -76.92744,
latitude = 38.845985,
benchmark = 'Current',
vintage = 'ACS2019',
layers = 'Census Tracts, States, CDPs,␣

→˓Divisions')

result = geocoder.geography.from_coordinates(longitude = -76.92744,
latitude = 38.845985,
benchmark = 'Current',
vintage = 'ACS2019',
layers = 'Census Tracts, States, CDPs,␣

→˓Divisions')

50 Chapter 3. Geographies in the Census Geocoder

Census Geocoder, Release 0.1.0

See also:

• Location.from_coordinates()

• GeographicArea.from_coordinates()

import census_geocoder as geocoder

result = geocoder.location.from_batch(file_ = '/my-csv-file.csv',
benchmark = 'Current',
vintage = 'ACS2019')

result = geocoder.geography.from_batch(file_ = '/my-csv-file.csv',
benchmark = 'Current',
vintage = 'ACS2019',
layers = 'Census Tracts, States, CDPs, Divisions')

See also:

• Location.from_batch()

• GeographicArea.from_batch()

Hint: When using the Census Geocoder to return geographic area data, you can request multiple layers worth of
data by passing them in a comma-delimited string. This will return separate data for each layer indicated. The comma-
delimited string can include white-space for easy readability, which means that the following two values are considered
identical:

• layers = 'Census Tracts, States, CDPs, Divisions'

• layers = 'Census Tracts,States,CDPs,Divisions'

To retrieve all available layers that have data for a given location, you can submit 'all'. Unless you have set the
CENSUS_GEOCODER_LAYERS environment variable to a different value, 'all' is the default set of layers that will be
returned.

Note that layer names in the Census Geocoder are case-insensitive.

3.3 Census Geographic Hierarchies Explained

As you can tell from the list of layers above, there are lots of different types of geographic areas supported by the Census
Geocoder API. These areas overlap in lots of different ways, and the US Census Bureau’s documentation explaining
this can be a little hard to find. Therefore, I’ve tried to explain the hierarchies’ logic in straightforward language and
diagrams below.

See also:

• U.S. Census Bureau Geographic Entities and Concepts (PDF)

• The Standard Hierarchy of Census Geographic Entities (PDF)

• Hierarchy of American Indian, Alaska Native, and Native Hawaiian Areas (PDF)

• The Standard Hierarchy of Census Geographic Entities in Island Areas (PDF)

3.3. Census Geographic Hierarchies Explained 51

https://geocoding.geo.census.gov/geocoder/
https://geocoding.geo.census.gov/geocoder/

Census Geocoder, Release 0.1.0

3.3.1 Core Hierarchy

We should start by understanding the “core” of the US Census Bureau’s hierarchy, and working our way “up” from the
smallest section. This core hierarchy by definition does not overlap. Each area within a particular level of the hierarchy
is precisely defined, with those definitions represented in the Tigerline / Shapefile data published by the US Census
Bureau.

Census Block
The single smallest element in the core hierarchy is the Census Block. This is the most granular geographical
area for which the US Census Bureau reports data, and is the smallest geographic unit where data is available for
100% of its resident population.

Block Groups
Collections of Census Blocks. In general, the population size for block groups are 600 - 3,000.

This is the most granular geographical area for which the US Census Bureau reports sampled data.

Census Tracts
Collections of Block Groups. They are considered small, permanent, and consistent statistical sections of their
containing county.

Optimally contains 4,000 people, and range from 1,200 - 8,000 people.

Counties and County Equivalents
The first administrative (government administered) area defined in the core hierarchy. Counties have their own
administrations, subordinate to the state administration. Defined as a collection of Census Tracts.

Note: In 48 states, “counties” in the data correspond to “counties” in the their legal administration.

In MD, MO, NV, and VA, Independent Cities are treated as counties.

In LA, parishes are treated as counties.

In Alaska, Cities, Boroughs, Municipalities, and Census Areas are treated as counties.

In Puerto Rico, municipios are treated as counties.

In American Samoa, islands and districts are treated as counties.

In the Northern Marianas, municipalities are treated as counties.

In the Virgin Islands, islands are treated as counties.

52 Chapter 3. Geographies in the Census Geocoder

Census Geocoder, Release 0.1.0

Guam and the District of Columbia are each treated as a county.

In addition to breaking down into census tracts, counties may also be broken down into:

• County Subdivisions

• Voting Districts

States
The federally-constituted state (or territory, as applicable). Defined as a collection of Counties.

In addition to breaking down into counties, states may also be broken down into:

• School Districts

• Congressional Districts

• State Legislative Districts

States also include Places, which are named entities in several types:

• Incorporated Places. Which are legally-bounded entities with some form of local governance recognized
by the state. Typically they are referred to as cities, boroughs, towns, or villages.

• Census Designated Places. Which are statistical agglomerations of unincorporated areas that are still
identifiable by name.

• Consolidated Cities. Which are statistical agglomerations of city-related places.

Divisions
Collections of states that comprise a division within the USGIS definition of divisions.

Regions
Collection of divisions that comprise a region, per the USGIS definition.

National
Collection of all regions, that in total makes up the United States of America.

In addition to breaking down into regions, the country can also be broken down into:

• Zip Code Tabulation Areas

Hint: It may be surprising that zip code tabulation areas are not defined at the state level. There are several
important reasons for this fact:

• First, ZCTAs in the Census definition are only approximate matches for the US Postal Service’s zip code
definitions. They are statistical entities that are composed of Census Blocks, and so may not align perfectly
to building zip codes.

• Zip codes in general are federally administered by the US Postal Service, and in some (very rare!) cases
zip codes may actually straddle state lines.

The country also contains a number of standalone geographical areas, which while not comprising 100% of the
nation, may represent significant sections of the country or its component parts. In particular, the country also
includes:

• Core-based Statistical Areas. These are statistical areas that are composed of census blocks and which
are used to represent different population agglomerations. Examples include Metropolitan Statistical Areas
(which are statistical agglomerations for a given metro area), or NECTAs (New England City and Town
Areas, which are division-specific agglomerations of New England communities).

3.3. Census Geographic Hierarchies Explained 53

Census Geocoder, Release 0.1.0

• Urban Areas. These are statistical areas that are composed of census blocks, and which have two types:
urban clusters (which contain 2,500 - 50,000 people) and urbanized areas (which contain 50,000 or more
people).

3.3.2 Secondary Hierarchies

Budding off from the core hierarchy, specific geographic entities can either be broken down or contain other secondary
hierarchies. Most secondary hierarchies are flat (i.e. they are themselves defined by a collection of census blocks), but
they may be composed of different types of entities.

A good example of this pattern is the secondary-hierarchy concept of “School District”. While school districts cannot
be broken down further (they are defined by census blocks), there are three types of school district that are available
within the US Census data: Unified School Districts, Secondary School Districts, and Elementary School Districts.

Places

Another major secondary hierarchy with similar “type-based” differentiation is the concept of “places”. There are
multiple types of place, including Census Designated Places, Incorporated Places, and Consolidated Cities. These
are conceptual areas, which in turn can all be broken down into their component census blocks.

The most important types of places are:

• Incorporated Places. Which are legally-bounded entities with some form of local governance recognized by
the state. Typically they are referred to as cities, boroughs, towns, or villages.

• Census Designated Places. Which are statistical agglomerations of unincorporated areas that are still identifiable
by name.

3.3.3 AIANHH Hierarchy

Besides the core hierarchy described above, the US Census Bureau also reports data within an American Indian, Alaska
Native, and Native Hawaiaan-oriented hierarchy.

This hierarchy is also built by rolling-up Census Blocks, however it does not conform to either the state or county-level
definitions used in the core hierarchy. This is because tribal population groups, federally-designated American Indian
areas, tribal-designated areas, etc. may often cross state, division, or regional lines.

54 Chapter 3. Geographies in the Census Geocoder

Census Geocoder, Release 0.1.0

3.3. Census Geographic Hierarchies Explained 55

Census Geocoder, Release 0.1.0

56 Chapter 3. Geographies in the Census Geocoder

CHAPTER

FOUR

API REFERENCE

• Locations

– Location

– MatchedAddress

• Geographies

– GeographyCollection

– GeographicArea

– Census Block and Related

– Census Block Group

– Tribal Census Block Group

– Census Tract

– Tribal Census Tract

– County and Related

– State

– PUMA and Related

– State Legislative District and Related

– ZCTA5 and Related

– School District-Related

– Voting District

– Metropolitan Division

– Combined Statistical Area

– Tribal Subdivision

– Census Designated Place

– Division

– Congressional District and Related

– Region

– Metropolitan Statistical Area

57

Census Geocoder, Release 0.1.0

– Micropolitan Statistical Area

– Estate

– Subbarrio

– Consolidated City

– Incorporated Place

– Alaska Native Regional Corporation

– Federal American Indian Reservation

– Off-Reservation Trust Land

– State American Indian Reservation

– Hawaiian Home Land

– Alaska Native Village Statistical Area

– Oklahoma Tribal Statistical Areas

– State Designated Tribal Statistical Areas

– Tribal Designated Statistical Areas

– American Indian Joint-Use Areas

– CombinedNECTA and Related

– Urban-related Geographical Areas

– Traffic Analysis Zone and Related

• Census Geocoder Internals

– Base Entity

– Geographic Entity

4.1 Locations

4.1.1 Location

class Location(**kwargs)
Represents a specific location returned by the US Census Geocoder API.

classmethod from_address(*args, **kwargs)
Return data from an adddress, supplied either as a single one-line address or a parametrized address.

Parameters

• one_line (str / None) – A single-line address, e.g. '4600 Silver Hill Rd,
Washington, DC 20233'. Defaults to None.

• street_1 (str / None) – A street address, e.g. '4600 Silver Hill Rd'. Defaults to
None.

• street_2 (str / None) – A secondary component of a street address, e.g. 'Floor 3'.
Defaults to None.

58 Chapter 4. API Reference

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/constants.html#None

Census Geocoder, Release 0.1.0

• street_3 (str / None) – A tertiary component of a street address, e.g. 'Apt. B'. De-
faults to None.

• city (str / None) – The city or town of a street address, e.g. 'Washington'. Defaults to
None.

• state (str / None) – The state or territory of a street address, e.g. 'DC'. Defaults to None.

• zip_code (str / None) – The zip code (or zip code + 4) of a street address, e.g. '20233'.
Defaults to None.

• benchmark (str) – The name of the benchmark of data to return. The default value is
determined by the CENSUS_GEOCODER_BENCHMARK environment variable, and if that is not
set defaults to 'Current' which represents the current default benchmark, per the Census
Geocoder API.

Accepts the following values:

– 'Current' (default)

– 'Census2020'

• vintage (str) – The vintage of Census data for which data should be returned. The
default value is determined by the CENSUS_GEOCODER_VINTAGE environment variable,
and if that is not set defaults to 'Current' which represents the default vintage per the
Census Geocoder API.

Acceptable values are dependent on the benchmark specified, as per the table below:

BENCHMARKS
Current Census2020

VINTAGES Current Census2020
Census2020 Census2010
ACS2019
ACS2018
ACS2017
Census2010

• layers (str) – The set of geographic layers to return for the request. The default value is
determined by the CENSUS_GEOCODER_LAYERS environment variable, and if that is not set
defaults to 'all'.

See also:

– Geographies Benchmarks, Vintages, and Layers

Note: If more than one address-related parameter are supplied, this method will assume that a parametrized
address is provided.

Returns A given geographic entity.

Return type GeographicEntity

Raises

• NoAddressError – if no address information is supplied

4.1. Locations 59

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://geocoding.geo.census.gov/geocoder/
https://geocoding.geo.census.gov/geocoder/
https://docs.python.org/3.6/library/stdtypes.html#str
https://geocoding.geo.census.gov/geocoder/
https://docs.python.org/3.6/library/stdtypes.html#str

Census Geocoder, Release 0.1.0

• EntityNotFoundError – if no geographic entity was found matching the address sup-
plied

• UnrecognizedBenchmarkError – if the benchmark supplied is not recognized

• UnrecognizedVintageError – if the vintage supplied is not recognized

classmethod from_batch(*args, **kwargs)
Return geographic entities for a batch collection of inputs.

Parameters

• file (str) – The name of a file in CSV, XLS/X, DAT, or TXT format. Expects the
file to have the following columns without a header row:

– Unique ID

– Street Address

– City

– State

– Zip Code

• benchmark (str) – The name of the benchmark of data to return. The default value is
determined by the CENSUS_GEOCODER_BENCHMARK environment variable, and if that
is not set defaults to 'Current' which represents the current default benchmark, per
the Census Geocoder API.

Accepts the following values:

– 'Current' (default)

– 'Census2020'

• vintage (str) – The vintage of Census data for which data should be returned. The
default value is determined by the CENSUS_GEOCODER_VINTAGE environment vari-
able, and if that is not set defaults to 'Current' which represents the default vintage
per the Census Geocoder API.

Acceptable values are dependent on the benchmark specified, as per the table below:

BENCHMARKS
Current Census2020

VINTAGES Current Census2020
Census2020 Census2010
ACS2019
ACS2018
ACS2017
Census2010

• layers (str) – The set of geographic layers to return for the request. The default
value is determined by the CENSUS_GEOCODER_LAYERS environment variable, and if
that is not set defaults to 'all'.

See also:

– Geographies Benchmarks, Vintages, and Layers

Returns A collection of geographic entities.

60 Chapter 4. API Reference

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://geocoding.geo.census.gov/geocoder/
https://docs.python.org/3.6/library/stdtypes.html#str
https://geocoding.geo.census.gov/geocoder/
https://docs.python.org/3.6/library/stdtypes.html#str

Census Geocoder, Release 0.1.0

Return type list of GeographicEntity

Raises

• NoFileProvidedError – if no file_ is provided

• FileNotFoundError – if file_ does not exist on the filesystem

• BatchSizeTooLargeError – if file_ contains more than 10,000 records

• EntityNotFoundError – if no geographic entity was found matching the address
supplied

• UnrecognizedBenchmarkError – if the benchmark supplied is not recognized

• UnrecognizedVintageError – if the vintage supplied is not recognized

classmethod from_coordinates(*args, **kwargs)
Return data from a pair of geographic coordinates (longitude and latitude).

Parameters

• longitude (numeric) – The longitude coordinate.

• latitude (numeric) – The latitude coordinate.

• benchmark (str) – The name of the benchmark of data to return. The default value is
determined by the CENSUS_GEOCODER_BENCHMARK environment variable, and if that
is not set defaults to 'Current' which represents the current default benchmark, per
the Census Geocoder API.

Accepts the following values:

– 'Current' (default)

– 'Census2020'

• vintage (str) – The vintage of Census data for which data should be returned. The
default value is determined by the CENSUS_GEOCODER_VINTAGE environment vari-
able, and if that is not set defaults to 'Current' which represents the default vintage
per the Census Geocoder API.

Acceptable values are dependent on the benchmark specified, as per the table below:

BENCHMARKS
Current Census2020

VINTAGES Current Census2020
Census2020 Census2010
ACS2019
ACS2018
ACS2017
Census2010

• layers (str) – The set of geographic layers to return for the request. The default
value is determined by the CENSUS_GEOCODER_LAYERS environment variable, and if
that is not set defaults to 'all'.

See also:

– Geographies Benchmarks, Vintages, and Layers

4.1. Locations 61

https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/exceptions.html#FileNotFoundError
https://docs.python.org/3.6/library/stdtypes.html#str
https://geocoding.geo.census.gov/geocoder/
https://docs.python.org/3.6/library/stdtypes.html#str
https://geocoding.geo.census.gov/geocoder/
https://docs.python.org/3.6/library/stdtypes.html#str

Census Geocoder, Release 0.1.0

Note: If more than one address-related parameter are supplied, this method will assume that a
parametrized address is provided.

Returns A given geographic entity.

Return type GeographicEntity

Raises

• NoAddressError – if no address information is supplied

• EntityNotFound – if no geographic entity was found matching the address supplied

• UnrecognizedBenchmarkError – if the benchmark supplied is not recognized

• UnrecognizedVintageError – if the vintage supplied is not recognized

classmethod from_csv_record(csv_record)
Create an instance of the geographic entity from its CSV record.

Parameters csv_record (list of str) – The list of columns for the CSV record.

Returns An instance of the geographic entity.

Return type GeographicEntity

classmethod from_dict(as_dict)
Create an instance of the geographic entity from its dict representation.

Parameters as_dict (dict) – The dict representation of the geographic entity.

Returns An instance of the geographic entity.

Return type GeographicEntity

classmethod from_json(as_json)
Create an instance of the geographic entity from its JSON representation.

Parameters as_json (str, dict, or list) – The JSON representation of the geographic
entity.

Returns An instance of the geographic entity.

Return type GeographicEntity

inspect(as_census_fields=False)
Produce a list of the location’s properties that have values.

Parameters as_census_fields (bool) – If True, return property names as they appear in
Census databases or the output of the Census Geocoder API. If False, return properties
as they are defined on the Census Geocoder objects. Defaults to False.

Return type list of str

to_dict()
Returns a dict representation of the geographic entity.

Note: The dict representation matches the JSON structure for the US Census Geocoder API. This is a
not-very-pythonic dict structure, but at least this ensures idempotency.

Returns dict representation of the entity.

62 Chapter 4. API Reference

https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/functions.html#bool
https://geocoding.geo.census.gov/geocoder/
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict

Census Geocoder, Release 0.1.0

Return type dict

to_json()
Returns a JSON representation of the geographic entity.

Note: The JSON representation matches the JSON structure for the US Census Geocoder API. This is a
not-very-pythonic structure, but at least this ensures idempotency.

Returns str representation of the entity.

Return type str

property benchmark
The short-hand value of the benchmark for which this Location was calculated.

Return type str / None

property benchmark_description
The description of the benchmark for which this data was returned.

Return type str

property benchmark_id
The name of the benchmark for which this data was returned.

Return type str

property benchmark_is_default
If True, indicates that the default benchmark has been applied.

Return type bool

property benchmark_name
The name of the benchmark for which this data was returned.

Return type str

property entity_type
The type of geographic entity that the object represents. Supports either: locations or geographies.

Return type str

property input_address
Returns a dict with the input address provided.

Return type dict

property input_city
The city that was provided as input to get this Location.

Return type str or None

property input_one_line
The one-line address that was provided as input to get this Location.

Return type str or None

property input_state
The state that was provided as input to get this Location.

Return type str or None

4.1. Locations 63

https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None

Census Geocoder, Release 0.1.0

property input_street
The street address that was provided as input to get this Location.

Return type str or None

property input_zip_code
The zip code that was provided as input to get this Location.

Return type str or None

property matched_addresses
Collection of addresses that have been matched to the Location.

Return type list of MatchedAddress / None

property vintage
The short-hand value of the vintage for which this Location was calculated.

Return type str / None

property vintage_description
The description of the vintage for which this data was returned.

Return type str

property vintage_id
The name of the vintage for which this data was returned.

Return type str

property vintage_is_default
If True, indicates that the default vintage has been applied.

Return type bool

property vintage_name
The name of the vintage for which this data was returned.

Return type str

4.1.2 MatchedAddress

class MatchedAddress(**kwargs)
Represents a matched address returned by the US Census GeoCoder API.

classmethod from_csv_record(csv_record)
Create an instance of the geographic entity from its CSV record.

Parameters csv_record (list of str) – The list of columns for the CSV record.

Returns An instance of the geographic entity.

Return type GeographicEntity

classmethod from_dict(as_dict)
Create an instance of the geographic entity from its dict representation.

Parameters as_dict (dict) – The dict representation of the geographic entity.

Returns An instance of the geographic entity.

Return type GeographicEntity

64 Chapter 4. API Reference

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict

Census Geocoder, Release 0.1.0

classmethod from_json(as_json)
Create an instance of the geographic entity from its JSON representation.

Parameters as_json (str, dict, or list) – The JSON representation of the geographic
entity.

Returns An instance of the geographic entity.

Return type GeographicEntity

inspect(as_census_fields=False)
Produce a list of the matched address properties that have values.

Parameters as_census_fields (bool) – If True, return property names as they appear in
Census databases or the output of the Census Geocoder API. If False, return properties
as they are defined on the Census Geocoder objects. Defaults to False.

Return type list of str

to_dict()
Returns a dict representation of the geographic entity.

Note: The dict representation matches the JSON structure for the US Census Geocoder API. This is a
not-very-pythonic dict structure, but at least this ensures idempotency.

Returns dict representation of the entity.

Return type dict

to_json()
Returns a JSON representation of the geographic entity.

Note: The JSON representation matches the JSON structure for the US Census Geocoder API. This is a
not-very-pythonic structure, but at least this ensures idempotency.

Returns str representation of the entity.

Return type str

property address
The canonical address that was matched for the Location.

Return type str / None

property block
Census Block Code

Return type str / None

property city
The canonical city name that was matched for the Location.

Rdirection str / None

property county_fips_code
County FIPS Code

Return type str

4.1. Locations 65

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/functions.html#bool
https://geocoding.geo.census.gov/geocoder/
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str

Census Geocoder, Release 0.1.0

property entity_type
The type of geographic entity that the object represents. Supports either: locations or geographies.

Return type str

property from_address
The canonical lower-bound street number that was matched for the Location.

Rdirection str / None

property geographies
Collection of geographical areas that this address is part of.

Return type GeographyCollection / None

property latitude
The latitude coordinate for the location.

Return type decimal

property longitude
The longitude coordinate for the location.

Return type decimal

property pre_direction
The canonical pre-direction that was matched for the Location.

Rdirection str / None

property pre_qualifier
The canonical pre-qualifier that was matched for the Location.

Rqualifier str / None

property pre_type
The canonical pre-type that was matched for the Location.

Return type str / None

property state
The canonical state that was matched for the Location.

Rdirection str / None

property state_fips_code
State FIPS Code

Return type str

property street
The canonical street name that was matched for the Location.

Rdirection str / None

property suffix_direction
The canonical suffix-direction that was matched for the Location.

Rdirection str / None

property suffix_qualifier
The canonical suffix-qualifier that was matched for the Location.

Rqualifier str / None

property suffix_type
The canonical suffix-type that was matched for the Location.

66 Chapter 4. API Reference

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None

Census Geocoder, Release 0.1.0

Return type str / None

property tigerline_id
The TigerLine ID for the matched address.

Return type str / None

property tigerline_side
The TigerLine side of the street for the matched address. Accepts either ‘L’ or ‘R’.

Return type str / None

property to_address
The canonical upper-bound street number that was matched for the Location.

Rdirection str / None

property tract
Census Tract Code

Return type str

property zip_code
The canonical zip code that was matched for the Location.

Rdirection str / None

4.2 Geographies

4.2.1 GeographyCollection

class GeographyCollection(**kwargs)
Collection of GeographicArea objects.

from_csv_record(csv_record)
Create an instance of the geographic entity from its CSV record.

Parameters csv_record (list of str) – The list of columns for the CSV record.

Returns An instance of the geographic entity.

Return type GeographicEntity

classmethod from_dict(as_dict)
Create an instance of the geographic entity from its dict representation.

Parameters as_dict (dict) – The dict representation of the geographic entity.

Returns An instance of the geographic entity.

Return type GeographicEntity

classmethod from_json(as_json)
Create an instance of the geographic entity from its JSON representation.

Parameters as_json (str, dict, or list) – The JSON representation of the geographic
entity.

Returns An instance of the geographic entity.

Return type GeographicEntity

4.2. Geographies 67

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#list

Census Geocoder, Release 0.1.0

to_dict()
Returns a dict representation of the geographic entity.

Note: The dict representation matches the JSON structure for the US Census Geocoder API. This is a
not-very-pythonic dict structure, but at least this ensures idempotency.

Returns dict representation of the entity.

Return type dict

to_json()
Returns a JSON representation of the geographic entity.

Note: The JSON representation matches the JSON structure for the US Census Geocoder API. This is a
not-very-pythonic structure, but at least this ensures idempotency.

Returns str representation of the entity.

Return type str

property american_indian_joint_use_areas
American Indian Joint-Use Areas

Return type list of AIJUA

property anrc
Alaska Native Regional Corporations

Return type list of ANRC

property anvsa
Alaska Native Village Statistical Area

Return type list of ANVSA

property block_groups
Census Block Groups

Return type list of CensusBlockGroup

property blocks
Census Blocks

Return type list of CensusBlock

property blocks_2020
2020 Census Blocks

Return type list of CensusBlock_2020

property combined_nectas
Combined New England City and Town Areas

Return type list of CombinedNECTA

property congressional_districts_111
111th Congressional Districts

Return type list of CongressionalDistrict_111

68 Chapter 4. API Reference

https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list

Census Geocoder, Release 0.1.0

property congressional_districts_113
113th Congressional Districts

Return type list of CongressionalDistrict_113

property congressional_districts_115
115th Congressional Districts

Return type list of CongressionalDistrict_115

property congressional_districts_116
116th Congressional Districts

Return type list of CongressionalDistrict_116

property consolidated_cities
Consolidated Cities

Return type list of ConsolidatedCity

property counties
Census Counties

Return type list of County

property county_subdivisions
County Sub-division

Return type list of CountySubDivision

property csa
Combined Statistical Areas

Return type list of CombinedStatisticalArea

property divisions
Census Divisions

Return type list of CensusDivision

property elementary_school_districts
Elementary School Districts

Return type list of ElementarySchoolDistrict

property entity_type
The type of geographic entity that the object represents. Supports either: locations or geographies.

Return type str

property estates
Estates

Return type list of Estate

property federal_american_indian_reservations
Federal American Indian Reservations

Return type list of FederalAmericanIndianReservation

property hawaiian_home_lands
Hawaiian Home Lands

Return type list of HawaiianHomeLand

property incorporated_places
Incorporated Places

4.2. Geographies 69

https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list

Census Geocoder, Release 0.1.0

Return type list of IncorporatedPlace

property metropolitan_divisions
Metropolitan Divisions

Return type list of MetropolitanDivision

property metrpolitan_nectas
Metropolitan New England City and Town Areas

Return type list of MetropolitanNECTA

property micropolitan_nectas
Micropolitan New England City and Town Areas

Return type list of MicropolitanNECTA

property msa
Metropolitan Statistical Area

Return type list of MetropolitanStatisticalArea

property necta_divisions
New England City and Town Area Divisions

Return type list of NECTADivision

property off_reservation_trust_lands
Off-Reservation Trust Lands

Return type list of OffReservationTrustLand

property otsa
Oklahoma Tribal Statistical Areas

Return type list of OTSA

property pumas
Public Use Microdata Areas

Return type list of PUMA

property pumas_2010
2010 Census Public Use Microdata Areas

Return type list of PUMA_2010

property regions
Census Regions

Return type list of CensusRegion

property sdtsa
State Designated Tribal Statistical Areas

Return type list of SDTSA

property secondary_school_districts
Secondary School Districts

Return type list of SecondarySchoolDistrict

property state_american_indian_reservations
State American Indian Reservation

Return type list of StateAmericanIndianReservation

70 Chapter 4. API Reference

https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list

Census Geocoder, Release 0.1.0

property state_legislative_districts_lower
State Legislative Districts - Lower

Return type list of StateLegislativeDistrictLower

property state_legislative_districts_lower_2010
2010 State Legislative Districts - Lower

Return type list of StateLegislativeDistrictLower_2010

property state_legislative_districts_lower_2012
2012 State Legislative Districts - Lower

Return type list of StateLegislativeDistrictLower_2012

property state_legislative_districts_lower_2016
2016 State Legislative Districts - Lower

Return type list of StateLegislativeDistrictLower_2016

property state_legislative_districts_lower_2018
2018 State Legislative Districts - Lower

Return type list of StateLegislativeDistrictLower_2018

property state_legislative_districts_upper
2010 State Legislative Districts - Upper

Return type list of StateLegislativeDistrictUpper_2010

property state_legislative_districts_upper_2010
2010 State Legislative Districts - Upper

Return type list of StateLegislativeDistrictUpper_2010

property state_legislative_districts_upper_2012
2012 State Legislative Districts - Upper

Return type list of StateLegislativeDistrictUpper_2012

property state_legislative_districts_upper_2016
2016 State Legislative Districts - Upper

Return type list of StateLegislativeDistrictUpper_2016

property state_legislative_districts_upper_2018
2018 State Legislative Districts - Upper

Return type list of StateLegislativeDistrictUpper_2018

property states
States

Return type list of State

property subbarrios
Sub-barrios

Return type list of Subbarrio

property tdsa
Tribal Designated Statistical Areas

Return type list of TDSA

property tracts
Census Tracts

4.2. Geographies 71

https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list

Census Geocoder, Release 0.1.0

Return type list of CensusTract

property traffic_analysis_districts
Traffic Analysis Districts

Return type list of TrafficAnalysisDistrict

property traffic_analysis_zones
Traffic Analysis Zones

Return type list of TrafficAnalysisZone

property tribal_block_groups
Tribal Census Block Groups

Return type list of TribalCensusBlockGroup

property tribal_subdivisions
Tribal Sub-divisions

Return type list of TribalSubDivision

property tribal_tracts
Tribal Census Tracts

Return type list of TribalCensusTract

property unified_school_districts
Unified School Districts

Return type list of UnifiedSchoolDistrict

property urban_clusters
Urban Clusters

Return type list of UrbanCluster

property urban_clusters_2010
2010 Census Urban Clusters

Return type list of urban_clusters_2010

property urban_growth_areas
Urban Growth Areas

Return type list of UrbanGrowthArea

property urbanized_areas
Urbanized Areas

Return type list of UrbanizedArea

property urbanized_areas_2010
2010 Census Urbanized Areas

Return type list of UrbanizedArea_2010

property voting_districts
Voting Districts

Return type list of VotingDistrict

property zcta5
Zip Code Tabulation Area

Return type list of ZCTA5

72 Chapter 4. API Reference

https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list

Census Geocoder, Release 0.1.0

property zcta_2010
2010 Census ZIP Code Tabulation Areas

Return type list of ZCTA_2010

property zcta_2020
2020 Census ZIP Code Tabulation Areas

Return type list of ZCTA_2020

4.2.2 GeographicArea

class GeographicArea(**kwargs)
Base class for a given geography as supported by the US government.

classmethod from_address(*args, **kwargs)
Return data from an adddress, supplied either as a single one-line address or a parametrized address.

Parameters

• one_line (str / None) – A single-line address, e.g. '4600 Silver Hill Rd,
Washington, DC 20233'. Defaults to None.

• street_1 (str / None) – A street address, e.g. '4600 Silver Hill Rd'. Defaults
to None.

• street_2 (str / None) – A secondary component of a street address, e.g. 'Floor
3'. Defaults to None.

• street_3 (str / None) – A tertiary component of a street address, e.g. 'Apt. B'.
Defaults to None.

• city (str / None) – The city or town of a street address, e.g. 'Washington'. Defaults
to None.

• state (str / None) – The state or territory of a street address, e.g. 'DC'. Defaults to
None.

• zip_code (str / None) – The zip code (or zip code + 4) of a street address, e.g.
'20233'. Defaults to None.

• benchmark (str) – The name of the benchmark of data to return. The default value is
determined by the CENSUS_GEOCODER_BENCHMARK environment variable, and if that
is not set defaults to 'Current' which represents the current default benchmark, per
the Census Geocoder API.

Accepts the following values:

– 'Current' (default)

– 'Census2020'

• vintage (str) – The vintage of Census data for which data should be returned. The
default value is determined by the CENSUS_GEOCODER_VINTAGE environment vari-
able, and if that is not set defaults to 'Current' which represents the default vintage
per the Census Geocoder API.

Acceptable values are dependent on the benchmark specified, as per the table below:

4.2. Geographies 73

https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://geocoding.geo.census.gov/geocoder/
https://docs.python.org/3.6/library/stdtypes.html#str
https://geocoding.geo.census.gov/geocoder/

Census Geocoder, Release 0.1.0

BENCHMARKS
Current Census2020

VINTAGES Current Census2020
Census2020 Census2010
ACS2019
ACS2018
ACS2017
Census2010

• layers (str) – The set of geographic layers to return for the request. The default
value is determined by the CENSUS_GEOCODER_LAYERS environment variable, and if
that is not set defaults to 'all'.

See also:

– Geographies Benchmarks, Vintages, and Layers

Note: If more than one address-related parameter are supplied, this method will assume that a
parametrized address is provided.

Returns A given geographic entity.

Return type GeographicEntity

Raises

• NoAddressError – if no address information is supplied

• EntityNotFoundError – if no geographic entity was found matching the address
supplied

• UnrecognizedBenchmarkError – if the benchmark supplied is not recognized

• UnrecognizedVintageError – if the vintage supplied is not recognized

classmethod from_batch(*args, **kwargs)
Return geographic entities for a batch collection of inputs.

Parameters

• file (str) – The name of a file in CSV, XLS/X, DAT, or TXT format. Expects the
file to have the following columns without a header row:

– Unique ID

– Street Address

– City

– State

– Zip Code

• benchmark (str) – The name of the benchmark of data to return. The default value is
determined by the CENSUS_GEOCODER_BENCHMARK environment variable, and if that
is not set defaults to 'Current' which represents the current default benchmark, per
the Census Geocoder API.

Accepts the following values:

74 Chapter 4. API Reference

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://geocoding.geo.census.gov/geocoder/

Census Geocoder, Release 0.1.0

– 'Current' (default)

– 'Census2020'

• vintage (str) – The vintage of Census data for which data should be returned. The
default value is determined by the CENSUS_GEOCODER_VINTAGE environment vari-
able, and if that is not set defaults to 'Current' which represents the default vintage
per the Census Geocoder API.

Acceptable values are dependent on the benchmark specified, as per the table below:

BENCHMARKS
Current Census2020

VINTAGES Current Census2020
Census2020 Census2010
ACS2019
ACS2018
ACS2017
Census2010

• layers (str) – The set of geographic layers to return for the request. The default
value is determined by the CENSUS_GEOCODER_LAYERS environment variable, and if
that is not set defaults to 'all'.

See also:

– Geographies Benchmarks, Vintages, and Layers

Returns A collection of geographic entities.

Return type list of GeographicEntity

Raises

• NoFileProvidedError – if no file_ is provided

• FileNotFoundError – if file_ does not exist on the filesystem

• BatchSizeTooLargeError – if file_ contains more than 10,000 records

• EntityNotFoundError – if no geographic entity was found matching the address
supplied

• UnrecognizedBenchmarkError – if the benchmark supplied is not recognized

• UnrecognizedVintageError – if the vintage supplied is not recognized

classmethod from_coordinates(*args, **kwargs)
Return data from a pair of geographic coordinates (longitude and latitude).

Parameters

• longitude (numeric) – The longitude coordinate.

• latitude (numeric) – The latitude coordinate.

• benchmark (str) – The name of the benchmark of data to return. The default value is
determined by the CENSUS_GEOCODER_BENCHMARK environment variable, and if that
is not set defaults to 'Current' which represents the current default benchmark, per
the Census Geocoder API.

Accepts the following values:

4.2. Geographies 75

https://docs.python.org/3.6/library/stdtypes.html#str
https://geocoding.geo.census.gov/geocoder/
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/exceptions.html#FileNotFoundError
https://docs.python.org/3.6/library/stdtypes.html#str
https://geocoding.geo.census.gov/geocoder/

Census Geocoder, Release 0.1.0

– 'Current' (default)

– 'Census2020'

• vintage (str) – The vintage of Census data for which data should be returned. The
default value is determined by the CENSUS_GEOCODER_VINTAGE environment vari-
able, and if that is not set defaults to 'Current' which represents the default vintage
per the Census Geocoder API.

Acceptable values are dependent on the benchmark specified, as per the table below:

BENCHMARKS
Current Census2020

VINTAGES Current Census2020
Census2020 Census2010
ACS2019
ACS2018
ACS2017
Census2010

• layers (str) – The set of geographic layers to return for the request. The default
value is determined by the CENSUS_GEOCODER_LAYERS environment variable, and if
that is not set defaults to 'all'.

See also:

– Geographies Benchmarks, Vintages, and Layers

Note: If more than one address-related parameter are supplied, this method will assume that a
parametrized address is provided.

Returns A given geographic entity.

Return type GeographicEntity

Raises

• NoAddressError – if no address information is supplied

• EntityNotFound – if no geographic entity was found matching the address supplied

• UnrecognizedBenchmarkError – if the benchmark supplied is not recognized

• UnrecognizedVintageError – if the vintage supplied is not recognized

classmethod from_csv_record(csv_record)
Create an instance of the geographic entity from its CSV record.

Parameters csv_record (list of str) – The list of columns for the CSV record.

Returns An instance of the geographic entity.

Return type Geography

classmethod from_dict(as_dict)
Create an instance of the geographic entity from its dict representation.

Parameters as_dict (dict) – The dict representation of the geographic entity.

76 Chapter 4. API Reference

https://docs.python.org/3.6/library/stdtypes.html#str
https://geocoding.geo.census.gov/geocoder/
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict

Census Geocoder, Release 0.1.0

Returns An instance of the geographic entity.

Return type GeographicEntity

classmethod from_json(as_json)
Create an instance of the geographic entity from its JSON representation.

Parameters as_json (str, dict, or list) – The JSON representation of the geographic
entity.

Returns An instance of the geographic entity.

Return type GeographicEntity

inspect(as_census_fields=False)
Produce a list of the geographic area’s properties that have values.

Parameters as_census_fields (bool) – If True, return property names as they appear in
Census databases or the output of the Census Geocoder API. If False, return properties
as they are defined on the Census Geocoder objects. Defaults to False.

Return type list of str

to_dict()
Returns a dict representation of the geographic entity.

Note: The dict representation matches the JSON structure for the US Census Geocoder API. This is a
not-very-pythonic dict structure, but at least this ensures idempotency.

Warning: Note that certain geography types only use a subset of the properties returned. Unused or
unavailable properties will be returned as None which will be converted to null if serialized to JSON.

Returns dict representation of the entity.

Return type dict

to_json()
Returns a JSON representation of the geographic entity.

Note: The JSON representation matches the JSON structure for the US Census Geocoder API. This is a
not-very-pythonic structure, but at least this ensures idempotency.

Returns str representation of the entity.

Return type str

property basename
The human-readable basename of the geography.

Return type str / None

property block
Census Block Code

Return type str / None

4.2. Geographies 77

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/functions.html#bool
https://geocoding.geo.census.gov/geocoder/
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None

Census Geocoder, Release 0.1.0

property block_group
Census Block Group Code

Return type str

property cbsa
Census CBSA Code

Return type str / None

property cbsa_pci
CBSA Principal City Indciator

Return type str / None

property congressional_session_code
Congressional Session Code

Return type str / None

property county_cc
County Class Code

Return type str / None

property county_fips_code
County FIPS Code

Return type str

property county_ns
County ANSI Feature Code

Return type str / None

property csa
Census CSA Code

Return type str / None

property division_fips_code
State FIPS Code

Return type str

property entity_type
The type of geographic entity that the object represents. Supports either: locations or geographies.

Return type str

property funcstat
The functional status code of the geography.

See also:

• Functional Status Codes and Definitions

Return type str

property functional_status
The functional status of the geography.

See also:

• Functional Status Codes and Definitions

78 Chapter 4. API Reference

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://www.census.gov/library/reference/code-lists/functional-status-codes.html
https://docs.python.org/3.6/library/stdtypes.html#str
https://www.census.gov/library/reference/code-lists/functional-status-codes.html

Census Geocoder, Release 0.1.0

Return type str

property geography_type
Returns the Geography Type for the given geography.

property geoid
The Geographic Identifier.

Note: Fully concatenated geographic code (State FIPS and component numbers).

Return type str / None

property high_school_grade
School District - Highest Grade

Return type str / None

property is_principal_city
If True, indicates that the geography is the principal city of its surrounding entity.

Return type bool

property land_area
The area of the geography that is on solid land, expressed in square meters.

Return type int / None

property latitude
The centroid latitude for the geographic area.

Return type Decimal / None

property latitude_internal_point
The internal point latitude for the geographic area.

Return type Decimal / None

property legal_statistical_area
Legal/Statistical Area Descriptor

See also:

• Legal/Statistical Area Descriptor Codes and Definitions

Return type str / None

property legislative_session_year
Legislative Session Year (LSY)

Return type str / None

property longitude
The centroid longitude for the geographic area.

Return type Decimal / None

property longitude_internal_point
The internal point longitude for the geographic area.

Return type Decimal / None

4.2. Geographies 79

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/decimal.html#decimal.Decimal
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/decimal.html#decimal.Decimal
https://docs.python.org/3.6/library/constants.html#None
https://www.census.gov/library/reference/code-lists/legal-status-codes.html
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/decimal.html#decimal.Decimal
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/decimal.html#decimal.Decimal
https://docs.python.org/3.6/library/constants.html#None

Census Geocoder, Release 0.1.0

property low_school_grade
School District - Lowest Grade

Return type str / None

property lsad
Legal/Statisical Area Descriptor (LSAD) Code

See also:

• Legal/Statistical Area Descriptor Codes and Definitions

Return type str / None

property lsad_category
Indicates the category of the LSAD for the geography. Returns either:

• Unspecified

• Prefix

• Suffix

• Balance

Return type str

property name
The human-readable name of the geography.

Return type str / None

property necta_pci
NECTA Principal City Indciator

Return type str / None

property object_id
The Object Identifier.

Return type str / None

property oid
The OID.

Return type str / None

property place
Census Place Code

Return type str / None

property place_cc
Place Class Code

Return type str / None

property place_ns
Place ANSI Feature Code

Return type str / None

property region_fips_code
Region FIPS Code

80 Chapter 4. API Reference

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://www.census.gov/library/reference/code-lists/legal-status-codes.html
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None

Census Geocoder, Release 0.1.0

Return type str

property school_district_type
School District Type

Return type str / None

property state_abbreviation
State Abbreviation

Return type str

property state_fips_code
State FIPS Code

Return type str

property state_ns
State ANSI Feature Code

Return type str

property tract
Census Tract Code

Return type str

property water_area
The area of the geography that is covered in water, expressed in square meters.

Note: Water area calculations in this table include only perennial water. All other water (intermittent,
glacier, and marsh/swamp) is included in this table as part of land_area calculations.

Return type int / None

property zcta5
ZCTA-5 Zip Code Value

Return type str / None

property zcta5_cc
ZCTA5 Class Code

Return type str / None

4.2.3 Census Block and Related

class CensusBlock(**kwargs)
Census Block

class CensusBlock_2020(**kwargs)
2020 Census Blocks

4.2. Geographies 81

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None

Census Geocoder, Release 0.1.0

4.2.4 Census Block Group

class CensusBlockGroup(**kwargs)
Census Block Group

4.2.5 Tribal Census Block Group

class TribalCensusBlockGroup(**kwargs)
Tribal Census Block Group

4.2.6 Census Tract

class CensusTract(**kwargs)
Census Tract

4.2.7 Tribal Census Tract

class TribalCensusTract(**kwargs)
Tribal Census Tract

4.2.8 County and Related

class County(**kwargs)

class CountySubDivision(**kwargs)
County Sub-division

4.2.9 State

class State(**kwargs)

4.2.10 PUMA and Related

class PUMA(**kwargs)
Public Use Microdata Area

class PUMA_2010(**kwargs)
2010 Census Public Use Microdata Area

82 Chapter 4. API Reference

Census Geocoder, Release 0.1.0

4.2.11 State Legislative District and Related

class StateLegislativeDistrictLower(**kwargs)
State Legislative District - Lower

class StateLegislativeDistrictLower_2010(**kwargs)
2010 State Legislative District - Lower

class StateLegislativeDistrictLower_2012(**kwargs)
2012 State Legislative District - Lower

class StateLegislativeDistrictLower_2016(**kwargs)
2016 State Legislative District - Lower

class StateLegislativeDistrictLower_2018(**kwargs)
2018 State Legislative District - Lower

class StateLegislativeDistrictUpper(**kwargs)
State Legislative District - Upper

class StateLegislativeDistrictUpper_2010(**kwargs)
2010 State Legislative District - Upper

class StateLegislativeDistrictUpper_2012(**kwargs)
2012 State Legislative District - Upper

class StateLegislativeDistrictUpper_2016(**kwargs)
2016 State Legislative District - Upper

class StateLegislativeDistrictUpper_2018(**kwargs)
2018 State Legislative District - Upper

4.2.12 ZCTA5 and Related

class ZCTA5(**kwargs)

class ZCTA_2010(**kwargs)
2010 Zip Code Tabulation Areas

class ZCTA_2020(**kwargs)
2020 Zip Code Tabulation Areas

4.2.13 School District-Related

class UnifiedSchoolDistrict(**kwargs)
Unified School District

class SecondarySchoolDistrict(**kwargs)
Secondary School District

class ElementarySchoolDistrict(**kwargs)
Elementary School District

4.2. Geographies 83

Census Geocoder, Release 0.1.0

4.2.14 Voting District

class VotingDistrict(**kwargs)
Voting District

4.2.15 Metropolitan Division

class MetropolitanDivision(**kwargs)
Metropolitan Division

4.2.16 Combined Statistical Area

class CombinedStatisticalArea(**kwargs)
Combined Statistical Area

4.2.17 Tribal Subdivision

class TribalSubDivision(**kwargs)
Tribal Sub-division

4.2.18 Census Designated Place

class CensusDesignatedPlace(**kwargs)
Census Designated Place

4.2.19 Division

class CensusDivision(**kwargs)
Census Division

84 Chapter 4. API Reference

Census Geocoder, Release 0.1.0

4.2.20 Congressional District and Related

class CongressionalDistrict(**kwargs)
Congressional District

class CongressionalDistrict_116(**kwargs)
116th Congressional District

class CongressionalDistrict_115(**kwargs)
115th Congressional District

class CongressionalDistrict_113(**kwargs)
113th Congressional District

class CongressionalDistrict_111(**kwargs)
111th Congressional District

4.2.21 Region

class CensusRegion(**kwargs)
Census Region

4.2.22 Metropolitan Statistical Area

class MetropolitanStatisticalArea(**kwargs)
Metropolitan Statistical Area

4.2.23 Micropolitan Statistical Area

class MicropolitanStatisticalArea(**kwargs)
Micropolitan Statistical Area

4.2.24 Estate

class Estate(**kwargs)

4.2. Geographies 85

Census Geocoder, Release 0.1.0

4.2.25 Subbarrio

class Subbarrio(**kwargs)

4.2.26 Consolidated City

class ConsolidatedCity(**kwargs)
Consolidated City

4.2.27 Incorporated Place

class IncorporatedPlace(**kwargs)
Incorporated Place

4.2.28 Alaska Native Regional Corporation

class ANRC(**kwargs)
Alaska Native Regional Corporation

4.2.29 Federal American Indian Reservation

class FederalAmericanIndianReservation(**kwargs)
Federal American Indian Reservation

4.2.30 Off-Reservation Trust Land

class OffReservationTrustLand(**kwargs)
Off-Reservation Trust Land

4.2.31 State American Indian Reservation

class StateAmericanIndianReservation(**kwargs)
State American Indian Reservation

86 Chapter 4. API Reference

Census Geocoder, Release 0.1.0

4.2.32 Hawaiian Home Land

class HawaiianHomeLand(**kwargs)
Hawaiian Home Land

4.2.33 Alaska Native Village Statistical Area

class ANVSA(**kwargs)
Alaska Native Village Statistical Area

4.2.34 Oklahoma Tribal Statistical Areas

class OTSA(**kwargs)
Oklahoma Tribal Statistical Area

4.2.35 State Designated Tribal Statistical Areas

class SDTSA(**kwargs)
State Designated Tribal Statistical Areas

4.2.36 Tribal Designated Statistical Areas

class TDSA(**kwargs)
Tribal Designated Statistical Area

4.2.37 American Indian Joint-Use Areas

class AIJUA(**kwargs)
American Indian Joint-Use Area

4.2. Geographies 87

Census Geocoder, Release 0.1.0

4.2.38 CombinedNECTA and Related

class CombinedNECTA(**kwargs)
Combined New England City and Town Area

class NECTADivision(**kwargs)
New England City and Town Area Division

class MetropolitanNECTA(**kwargs)
Metropolitan New England City and Town Area

class MicropolitanNECTA(**kwargs)
Micropolitan New England City and Town Area

4.2.39 Urban-related Geographical Areas

class UrbanGrowthArea(**kwargs)
Urban Growth Area

class UrbanizedArea(**kwargs)
Urbanized Area

class UrbanizedArea_2010(**kwargs)
2010 Census Urbanized Area

class UrbanCluster(**kwargs)
Urban Cluster

class UrbanCluster_2010(**kwargs)
2010 Census Urban Cluster

4.2.40 Traffic Analysis Zone and Related

class TrafficAnalysisZone(**kwargs)
Traffic Analysis Zone

class TrafficAnalysisDistrict(**kwargs)
Traffic Analysis District

4.3 Census Geocoder Internals

4.3.1 Base Entity

class BaseEntity
Abstract base clase for geographic entities that may or may not be supported by the API.

abstract classmethod from_csv_record(csv_record)
Create an instance of the geographic entity from its CSV record.

Parameters csv_record (list of str) – The list of columns for the CSV record.

88 Chapter 4. API Reference

https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#str

Census Geocoder, Release 0.1.0

Returns An instance of the geographic entity.

Return type GeographicEntity

abstract classmethod from_dict(as_dict)
Create an instance of the geographic entity from its dict representation.

Parameters as_dict (dict) – The dict representation of the geographic entity.

Returns An instance of the geographic entity.

Return type GeographicEntity

classmethod from_json(as_json)
Create an instance of the geographic entity from its JSON representation.

Parameters as_json (str, dict, or list) – The JSON representation of the geographic
entity.

Returns An instance of the geographic entity.

Return type GeographicEntity

abstract to_dict()
Returns a dict representation of the geographic entity.

Note: The dict representation matches the JSON structure for the US Census Geocoder API. This is a
not-very-pythonic dict structure, but at least this ensures idempotency.

Returns dict representation of the entity.

Return type dict

to_json()
Returns a JSON representation of the geographic entity.

Note: The JSON representation matches the JSON structure for the US Census Geocoder API. This is a
not-very-pythonic structure, but at least this ensures idempotency.

Returns str representation of the entity.

Return type str

abstract property entity_type
The type of geographic entity that the object represents. Supports either: locations or geographies.

Return type str

4.3. Census Geocoder Internals 89

https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str

Census Geocoder, Release 0.1.0

4.3.2 Geographic Entity

class GeographicEntity
Abstract base class for geographic entities that are supported by the API.

classmethod from_address(*args, **kwargs)
Return data from an adddress, supplied either as a single one-line address or a parametrized address.

Parameters

• one_line (str / None) – A single-line address, e.g. '4600 Silver Hill Rd,
Washington, DC 20233'. Defaults to None.

• street_1 (str / None) – A street address, e.g. '4600 Silver Hill Rd'. Defaults
to None.

• street_2 (str / None) – A secondary component of a street address, e.g. 'Floor
3'. Defaults to None.

• street_3 (str / None) – A tertiary component of a street address, e.g. 'Apt. B'.
Defaults to None.

• city (str / None) – The city or town of a street address, e.g. 'Washington'. Defaults
to None.

• state (str / None) – The state or territory of a street address, e.g. 'DC'. Defaults to
None.

• zip_code (str / None) – The zip code (or zip code + 4) of a street address, e.g.
'20233'. Defaults to None.

• benchmark (str) – The name of the benchmark of data to return. The default value is
determined by the CENSUS_GEOCODER_BENCHMARK environment variable, and if that
is not set defaults to 'Current' which represents the current default benchmark, per
the Census Geocoder API.

Accepts the following values:

– 'Current' (default)

– 'Census2020'

• vintage (str) – The vintage of Census data for which data should be returned. The
default value is determined by the CENSUS_GEOCODER_VINTAGE environment vari-
able, and if that is not set defaults to 'Current' which represents the default vintage
per the Census Geocoder API.

Acceptable values are dependent on the benchmark specified, as per the table below:

BENCHMARKS
Current Census2020

VINTAGES Current Census2020
Census2020 Census2010
ACS2019
ACS2018
ACS2017
Census2010

• layers (str) – The set of geographic layers to return for the request. The default
value is determined by the CENSUS_GEOCODER_LAYERS environment variable, and if
that is not set defaults to 'all'.

90 Chapter 4. API Reference

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://geocoding.geo.census.gov/geocoder/
https://docs.python.org/3.6/library/stdtypes.html#str
https://geocoding.geo.census.gov/geocoder/
https://docs.python.org/3.6/library/stdtypes.html#str

Census Geocoder, Release 0.1.0

See also:

– Geographies Benchmarks, Vintages, and Layers

Note: If more than one address-related parameter are supplied, this method will assume that a
parametrized address is provided.

Returns A given geographic entity.

Return type GeographicEntity

Raises

• NoAddressError – if no address information is supplied

• EntityNotFoundError – if no geographic entity was found matching the address
supplied

• UnrecognizedBenchmarkError – if the benchmark supplied is not recognized

• UnrecognizedVintageError – if the vintage supplied is not recognized

classmethod from_batch(*args, **kwargs)
Return geographic entities for a batch collection of inputs.

Parameters

• file (str) – The name of a file in CSV, XLS/X, DAT, or TXT format. Expects the
file to have the following columns without a header row:

– Unique ID

– Street Address

– City

– State

– Zip Code

• benchmark (str) – The name of the benchmark of data to return. The default value is
determined by the CENSUS_GEOCODER_BENCHMARK environment variable, and if that
is not set defaults to 'Current' which represents the current default benchmark, per
the Census Geocoder API.

Accepts the following values:

– 'Current' (default)

– 'Census2020'

• vintage (str) – The vintage of Census data for which data should be returned. The
default value is determined by the CENSUS_GEOCODER_VINTAGE environment vari-
able, and if that is not set defaults to 'Current' which represents the default vintage
per the Census Geocoder API.

Acceptable values are dependent on the benchmark specified, as per the table below:

4.3. Census Geocoder Internals 91

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://geocoding.geo.census.gov/geocoder/
https://docs.python.org/3.6/library/stdtypes.html#str
https://geocoding.geo.census.gov/geocoder/

Census Geocoder, Release 0.1.0

BENCHMARKS
Current Census2020

VINTAGES Current Census2020
Census2020 Census2010
ACS2019
ACS2018
ACS2017
Census2010

• layers (str) – The set of geographic layers to return for the request. The default
value is determined by the CENSUS_GEOCODER_LAYERS environment variable, and if
that is not set defaults to 'all'.

See also:

– Geographies Benchmarks, Vintages, and Layers

Returns A collection of geographic entities.

Return type list of GeographicEntity

Raises

• NoFileProvidedError – if no file_ is provided

• FileNotFoundError – if file_ does not exist on the filesystem

• BatchSizeTooLargeError – if file_ contains more than 10,000 records

• EntityNotFoundError – if no geographic entity was found matching the address
supplied

• UnrecognizedBenchmarkError – if the benchmark supplied is not recognized

• UnrecognizedVintageError – if the vintage supplied is not recognized

classmethod from_coordinates(*args, **kwargs)
Return data from a pair of geographic coordinates (longitude and latitude).

Parameters

• longitude (numeric) – The longitude coordinate.

• latitude (numeric) – The latitude coordinate.

• benchmark (str) – The name of the benchmark of data to return. The default value is
determined by the CENSUS_GEOCODER_BENCHMARK environment variable, and if that
is not set defaults to 'Current' which represents the current default benchmark, per
the Census Geocoder API.

Accepts the following values:

– 'Current' (default)

– 'Census2020'

• vintage (str) – The vintage of Census data for which data should be returned. The
default value is determined by the CENSUS_GEOCODER_VINTAGE environment vari-
able, and if that is not set defaults to 'Current' which represents the default vintage
per the Census Geocoder API.

Acceptable values are dependent on the benchmark specified, as per the table below:

92 Chapter 4. API Reference

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/exceptions.html#FileNotFoundError
https://docs.python.org/3.6/library/stdtypes.html#str
https://geocoding.geo.census.gov/geocoder/
https://docs.python.org/3.6/library/stdtypes.html#str
https://geocoding.geo.census.gov/geocoder/

Census Geocoder, Release 0.1.0

BENCHMARKS
Current Census2020

VINTAGES Current Census2020
Census2020 Census2010
ACS2019
ACS2018
ACS2017
Census2010

• layers (str) – The set of geographic layers to return for the request. The default
value is determined by the CENSUS_GEOCODER_LAYERS environment variable, and if
that is not set defaults to 'all'.

See also:

– Geographies Benchmarks, Vintages, and Layers

Note: If more than one address-related parameter are supplied, this method will assume that a
parametrized address is provided.

Returns A given geographic entity.

Return type GeographicEntity

Raises

• NoAddressError – if no address information is supplied

• EntityNotFound – if no geographic entity was found matching the address supplied

• UnrecognizedBenchmarkError – if the benchmark supplied is not recognized

• UnrecognizedVintageError – if the vintage supplied is not recognized

abstract classmethod from_csv_record(csv_record)
Create an instance of the geographic entity from its CSV record.

Parameters csv_record (list of str) – The list of columns for the CSV record.

Returns An instance of the geographic entity.

Return type GeographicEntity

abstract classmethod from_dict(as_dict)
Create an instance of the geographic entity from its dict representation.

Parameters as_dict (dict) – The dict representation of the geographic entity.

Returns An instance of the geographic entity.

Return type GeographicEntity

classmethod from_json(as_json)
Create an instance of the geographic entity from its JSON representation.

Parameters as_json (str, dict, or list) – The JSON representation of the geographic
entity.

Returns An instance of the geographic entity.

4.3. Census Geocoder Internals 93

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#list

Census Geocoder, Release 0.1.0

Return type GeographicEntity

inspect(as_census_fields=False)
Produce a list of the entity’s properties that have values.

Parameters as_census_fields (bool) – If True, return property names as they appear in
Census databases or the output of the Census Geocoder API. If False, return properties
as they are defined on the Census Geocoder objects. Defaults to False.

Return type list of str

abstract to_dict()
Returns a dict representation of the geographic entity.

Note: The dict representation matches the JSON structure for the US Census Geocoder API. This is a
not-very-pythonic dict structure, but at least this ensures idempotency.

Returns dict representation of the entity.

Return type dict

to_json()
Returns a JSON representation of the geographic entity.

Note: The JSON representation matches the JSON structure for the US Census Geocoder API. This is a
not-very-pythonic structure, but at least this ensures idempotency.

Returns str representation of the entity.

Return type str

abstract property entity_type
The type of geographic entity that the object represents. Supports either: locations or geographies.

Return type str

94 Chapter 4. API Reference

https://docs.python.org/3.6/library/functions.html#bool
https://geocoding.geo.census.gov/geocoder/
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str

CHAPTER

FIVE

ERROR REFERENCE

• Handling Errors

– Stack Traces

• Census Geocoder Errors

– CensusGeocoderError (from ValueError)

– CensusAPIError (from CensusGeocoderError)

– ConfigurationError (from CensusGeocoderError)

– UnrecognizedBenchmarkError (from ConfigurationError)

– UnrecognizedVintageError (from ConfigurationError)

– MalformedBatchFileError (from ConfigurationError)

– NoAddressError (from ConfigurationError)

– NoFileProvidedError (from ConfigurationError)

– BatchSizeTooLargeError (from ConfigurationError)

• Census Geocoder Warnings

– CensusGeocoderWarning (from UserWarning)

5.1 Handling Errors

5.1.1 Stack Traces

Because the Census Geocoder produces exceptions which inherit from the standard library, it leverages the same
API for handling stack trace information. This means that it will be handled just like a normal exception in unit test
frameworks, logging solutions, and other tools that might need that information.

95

https://docs.python.org/3.6/library/exceptions.html#ValueError
https://docs.python.org/3.6/library/exceptions.html#UserWarning

Census Geocoder, Release 0.1.0

5.2 Census Geocoder Errors

5.2.1 CensusGeocoderError (from ValueError)

class CensusGeocoderError
Base error raised by the Census Geocoder. Inherits from ValueError.

5.2.2 CensusAPIError (from CensusGeocoderError)

class CensusAPIError
Error raised when the Census Geocoder API returned an error.

5.2.3 ConfigurationError (from CensusGeocoderError)

class ConfigurationError
Error raised when a geocoding request was configured incorrectly.

5.2.4 UnrecognizedBenchmarkError (from ConfigurationError)

class UnrecognizedBenchmarkError
Error raised when a benchmark has been specified incorrectly.

5.2.5 UnrecognizedVintageError (from ConfigurationError)

class UnrecognizedVintageError
Error raised when a vintage has been specified incorrectly.

5.2.6 MalformedBatchFileError (from ConfigurationError)

class MalformedBatchFileError
Error raised when a batch file is structured improperly.

96 Chapter 5. Error Reference

https://docs.python.org/3.6/library/exceptions.html#ValueError
https://geocoding.geo.census.gov/geocoder/

Census Geocoder, Release 0.1.0

5.2.7 NoAddressError (from ConfigurationError)

class NoAddressError
Error raised when there was no address supplied with the request.

5.2.8 NoFileProvidedError (from ConfigurationError)

class NoFileProvidedError
Error raised when a batch file indicated in the request does not exist or cannot be read.

5.2.9 BatchSizeTooLargeError (from ConfigurationError)

class BatchSizeTooLargeError
Error raised when the size of a batch address file exceeds the limit of 10,000 imposed by the Census Geocoder
API.

5.3 Census Geocoder Warnings

5.3.1 CensusGeocoderWarning (from UserWarning)

class CensusGeocoderWarning
Base warning raised by the Census Geocoder. Inherits from UserWarning.

5.3. Census Geocoder Warnings 97

https://geocoding.geo.census.gov/geocoder/
https://geocoding.geo.census.gov/geocoder/

Census Geocoder, Release 0.1.0

98 Chapter 5. Error Reference

CHAPTER

SIX

CONTRIBUTING TO THE CENSUS GEOCODER

Note: As a general rule of thumb, the US Census Geocoder applies PEP 8 styling, with some important differences.

Branch Unit Tests
latest

v.0.5

develop

What makes an API idiomatic?

One of my favorite ways of thinking about idiomatic design comes from a talk given by Luciano Ramalho at Pycon
20165 where he listed traits of a Pythonic API as being:

• don’t force [the user] to write boilerplate code

• provide ready to use functions and objects

• don’t force [the user] to subclass unless there’s a very good reason

• include the batteries: make easy tasks easy

• are simple to use but not simplistic: make hard tasks possible

• leverage the Python data model to:

– provide objects that behave as you expect

– avoid boilerplate through introspection (reflection) and metaprogramming.

Contents:

• Design Philosophy

• Style Guide

5 https://www.youtube.com/watch?v=k55d3ZUF3ZQ

99

https://www.python.org/dev/peps/pep-0008
https://github.com/insightindustry/census-geocdoer/tree/master
https://travis-ci.com/insightindustry/census-geocoder
https://codecov.io/gh/insightindustry/census-geocoder
http://census-geocoder.readthedocs.io/en/latest/?badge=latest
https://github.com/insightindustry/census-geocoder/tree/v.0.1.0
https://travis-ci.com/insightindustry/census-geocoder
https://codecov.io/gh/insightindustry/census-geocoder
http://census-geocoder.readthedocs.io/en/latest/?badge=v.0.1.0
https://github.com/insightindustry/census-geocoder/tree/develop
https://travis-ci.com/insightindustry/census-geocoder
https://codecov.io/gh/insightindustry/census-geocoder
http://census-geocoder.readthedocs.io/en/latest/?badge=develop
https://www.youtube.com/watch?v=k55d3ZUF3ZQ
https://www.youtube.com/watch?v=k55d3ZUF3ZQ
https://www.youtube.com/watch?v=k55d3ZUF3ZQ

Census Geocoder, Release 0.1.0

– Basic Conventions

– Naming Conventions

– Design Conventions

– Documentation Conventions

∗ Sphinx

∗ Docstrings

• Dependencies

• Preparing Your Development Environment

• Ideas and Feature Requests

• Testing

• Submitting Pull Requests

• Building Documentation

• Contributors

• References

6.1 Design Philosophy

The Census Geocoder is meant to be a “beautiful” and “usable” library. That means that it should offer an idiomatic
API that:

• works out of the box as intended,

• minimizes “bootstrapping” to produce meaningful output, and

• does not force users to understand how it does what it does.

In other words:

Users should simply be able to drive the car without looking at the engine.

6.2 Style Guide

6.2.1 Basic Conventions

• Do not terminate lines with semicolons.

• Line length should have a maximum of approximately 90 characters. If in doubt, make a longer line or break the
line between clear concepts.

• Each class should be contained in its own file.

• If a file runs longer than 2,000 lines. . . it should probably be refactored and split.

• All imports should occur at the top of the file.

• Do not use single-line conditions:

100 Chapter 6. Contributing to the Census Geocoder

Census Geocoder, Release 0.1.0

GOOD
if x:
do_something()

BAD
if x: do_something()

• When testing if an object has a value, be sure to use if x is None: or if x is not None. Do not confuse
this with if x: and if not x:.

• Use the if x: construction for testing truthiness, and if not x: for testing falsiness. This is different from
testing:

– if x is True:

– if x is False:

– if x is None:

• As of right now, because we feel that it negatively impacts readability and is less-widely used in the community,
we are not using type annotations.

6.2.2 Naming Conventions

• variable_name and not variableName or VariableName. Should be a noun that describes what information
is contained in the variable. If a bool, preface with is_ or has_ or similar question-word that can be answered
with a yes-or-no.

• function_name and not function_name or functionName. Should be an imperative that describes what the
function does (e.g. get_next_page).

• CONSTANT_NAME and not constant_name or ConstantName.

• ClassName and not class_name or Class_Name.

6.2.3 Design Conventions

• Functions at the module level can only be aware of objects either at a higher scope or singletons (which effectively
have a higher scope).

• Functions and methods can use one positional argument (other than self or cls) without a default value. Any
other arguments must be keyword arguments with default value given.

def do_some_function(argument):
rest of function...

def do_some_function(first_arg,
second_arg = None,
third_arg = True):

rest of function ...

• Functions and methods that accept values should start by validating their input, throwing exceptions as appro-
priate.

• When defining a class, define all attributes in __init__.

6.2. Style Guide 101

Census Geocoder, Release 0.1.0

• When defining a class, start by defining its attributes and methods as private using a single-underscore prefix.
Then, only once they’re implemented, decide if they should be public.

• Don’t be afraid of the private attribute/public property/public setter pattern:

class SomeClass(object):
def __init__(*args, **kwargs):

self._private_attribute = None

@property
def private_attribute(self):
custom logic which may override the default return

return self._private_attribute

@setter.private_attribute
def private_attribute(self, value):
custom logic that creates modified_value

self._private_attribute = modified_value

• Separate a function or method’s final (or default) return from the rest of the code with a blank line (except for
single-line functions/methods).

6.2.4 Documentation Conventions

We are very big believers in documentation (maybe you can tell). To document the US Census Geocoder we rely on
several tools:

Sphinx1

Sphinx1 is used to organize the library’s documentation into this lovely readable format (which is also published to
ReadTheDocs2). This documentation is written in reStructuredText3 files which are stored in <project>/docs.

Tip: As a general rule of thumb, we try to apply the ReadTheDocs? own Documentation Style Guide4 to our RST
documentation.

Hint: To build the HTML documentation locally:

1. In a terminal, navigate to <project>/docs.

2. Execute make html.

When built locally, the HTML output of the documentation will be available at ./docs/_build/index.html.

1 http://sphinx-doc.org
2 https://readthedocs.org
3 http://www.sphinx-doc.org/en/stable/rest.html
4 http://documentation-style-guide-sphinx.readthedocs.io/en/latest/style-guide.html

102 Chapter 6. Contributing to the Census Geocoder

http://sphinx-doc.org
https://readthedocs.org
http://www.sphinx-doc.org/en/stable/rest.html
https://readthedocs.org
http://documentation-style-guide-sphinx.readthedocs.io/en/latest/style-guide.html
http://sphinx-doc.org
https://readthedocs.org
http://www.sphinx-doc.org/en/stable/rest.html
http://documentation-style-guide-sphinx.readthedocs.io/en/latest/style-guide.html

Census Geocoder, Release 0.1.0

Docstrings

• Docstrings are used to document the actual source code itself. When writing docstrings we adhere to the con-
ventions outlined in PEP 257.

6.3 Dependencies

• Validator-Collection v1.5.0 or higher

• Backoff-Utils v1.0.1 or higher

• Requests v2.26 or higher

6.4 Preparing Your Development Environment

In order to prepare your local development environment, you should:

1. Fork the Git repository.

2. Clone your forked repository.

3. Set up a virtual environment (optional).

4. Install dependencies:

census-geocoder/ $ pip install -r requirements.txt

And you should be good to go!

6.5 Ideas and Feature Requests

Check for open issues or create a new issue to start a discussion around a bug or feature idea.

6.6 Testing

If you’ve added a new feature, we recommend you:

• create local unit tests to verify that your feature works as expected, and

• run local unit tests before you submit the pull request to make sure nothing else got broken by accident.

See also:

For more information about the Census Geocoder testing approach please see: Testing the Census Geocoder

6.3. Dependencies 103

https://www.python.org/dev/peps/pep-0257
https://github.com/insightindustry/validator-collection
https://github.com/insightindustry/backoff-utils
https://docs.python-requests.org/
https://github.com/insightindustry/census-geocoder
https://github.com/insightindustry/census-geocoder/issues

Census Geocoder, Release 0.1.0

6.7 Submitting Pull Requests

After you have made changes that you think are ready to be included in the main library, submit a pull request on Github
and one of our developers will review your changes. If they’re ready (meaning they’re well documented, pass unit tests,
etc.) then they’ll be merged back into the main repository and slated for inclusion in the next release.

6.8 Building Documentation

In order to build documentation locally, you can do so from the command line using:

census-geocoder/ $ cd docs
census-geocoder/docs $ make html

When the build process has finished, the HTML documentation will be locally available at:

census-geocoder/docs/_build/html/index.html

Note: Built documentation (the HTML) is not included in the project’s Git repository. If you need local documenta-
tion, you’ll need to build it.

6.9 Contributors

Thanks to everyone who helps make the Census Geocoder useful:

• Chris Modzelewski (@insightindustry)

6.10 References

104 Chapter 6. Contributing to the Census Geocoder

https://github.com/insightindustry/

CHAPTER

SEVEN

TESTING THE CENSUS GEOCODER

Contents

• Testing the Census Geocoder

– Testing Philosophy

– Test Organization

– Configuring & Running Tests

∗ Installing with the Test Suite

∗ Command-line Options

∗ Running Tests

– Skipping Tests

– Incremental Tests

7.1 Testing Philosophy

Note: Unit tests for the Census Geocoder are written using pytest1 and a comprehensive set of test automation are
provided by tox2.

There are many schools of thought when it comes to test design. When building the Census Geocoder, we decided to
focus on practicality. That means:

• DRY is good, KISS is better. To avoid repetition, our test suite makes extensive use of fixtures, parametrization,
and decorator-driven behavior. This minimizes the number of test functions that are nearly-identical. However,
there are certain elements of code that are repeated in almost all test functions, as doing so will make future
readability and maintenance of the test suite easier.

• Coverage matters. . . kind of. We have documented the primary intended behavior of every function in the
SQLAthanor library, and the most-likely failure modes that can be expected. At the time of writing, we have
about 85% code coverage. Yes, yes: We know that is less than 100%. But there are edge cases which are
almost impossible to bring about, based on confluences of factors in the wide world. Our goal is to test the key
functionality, and as bugs are uncovered to add to the test functions as necessary.

1 https://docs.pytest.org/en/latest/
2 https://tox.readthedocs.io

105

https://docs.pytest.org/en/latest/
https://tox.readthedocs.io
https://docs.pytest.org/en/latest/
https://tox.readthedocs.io

Census Geocoder, Release 0.1.0

7.2 Test Organization

Each individual test module (e.g. test_validators.py) corresponds to a conceptual grouping of functionality. For
example:

• test_validators.py tests validator functions found in census_geocoder/_validators.py

Certain test modules are tightly coupled, as the behavior in one test module may have implications on the execution
of tests in another. These test modules use a numbering convention to ensure that they are executed in their required
order, so that test_1_NAME.py is always executed before test_2_NAME.py.

7.3 Configuring & Running Tests

7.3.1 Installing with the Test Suite

Installing via pip

From Local Development Environment

$ pip install census-geocoder[tests]

See also:

When you create a local development environment, all dependencies for running and extending the test suite are in-
stalled.

7.3.2 Command-line Options

The Census Geocoder does not use any custom command-line options in its test suite.

Tip: For a full list of the CLI options, including the defaults available, try:

census-geocoder $ cd tests/
census-geocoder/tests/ $ pytest --help

7.3.3 Running Tests

Entire Test Suite

Test Module

Test Function

tests/ $ pytest

tests/ $ pytest tests/test_module.py

tests/ $ pytest tests/test_module.py -k 'test_my_test_function'

106 Chapter 7. Testing the Census Geocoder

Census Geocoder, Release 0.1.0

7.4 Skipping Tests

Note: Because of the simplicity of the Census Geocoder, the test suite does not currently support any test skipping.

7.5 Incremental Tests

Note: The Census Geocoder test suite does support incremental testing, however at the moment none of the tests
designed rely on this functionality.

A variety of test functions are designed to test related functionality. As a result, they are designed to execute incremen-
tally. In order to execute tests incrementally, they need to be defined as methods within a class that you decorate with
the @pytest.mark.incremental decorator as shown below:

@pytest.mark.incremental
class TestIncremental(object):

def test_function1(self):
pass

def test_modification(self):
assert 0

def test_modification2(self):
pass

This class will execute the TestIncremental.test_function1() test, execute and fail on the TestIncremental.
test_modification() test, and automatically fail TestIncremental.test_modification2() because of the .
test_modification() failure.

To pass state between incremental tests, add a state argument to their method definitions. For example:

@pytest.mark.incremental
class TestIncremental(object):

def test_function(self, state):
state.is_logged_in = True
assert state.is_logged_in = True

def test_modification1(self, state):
assert state.is_logged_in is True
state.is_logged_in = False
assert state.is_logged_in is False

def test_modification2(self, state):
assert state.is_logged_in is True

Given the example above, the third test (test_modification2) will fail because test_modification updated the
value of state.is_logged_in.

Note: state is instantiated at the level of the entire test session (one run of the test suite). As a result, it can be
affected by tests in other test modules.

7.4. Skipping Tests 107

Census Geocoder, Release 0.1.0

108 Chapter 7. Testing the Census Geocoder

CHAPTER

EIGHT

RELEASE HISTORY

Contributors

• Chris Modzelewski (@insightindustry)

Contents

• Release History

– Release 0.1.0

8.1 Release 0.1.0

• Initial public release.

109

https://github.com/insightindustry/
https://travis-ci.com/insightindustry/census-geocoder
https://codecov.io/gh/insightindustry/census-geocoder
http://census-geocoder.readthedocs.io/en/latest/?badge=v.0.1.0

Census Geocoder, Release 0.1.0

110 Chapter 8. Release History

CHAPTER

NINE

GLOSSARY

Benchmark The period in time when the geographic data was snapshotted for use / return by the Census Geocoder
API.

Census Block The single smallest element in the core geographic hierarchy is the Census Block. This is the most
granular geographical area for which the US Census Bureau reports data, and is the smallest geographic unit
where data is available for 100% of its resident population.

Census Data This is information that is collected from the Constitutionally-mandated decennial census, which collects
information from 100% of residents in the United States.

Centroid Latitude The latitude coordinate for the geometric center of a geographic area.

Centroid Longitude The longitude coordinate for the geometric center of a geographic area.

Internal Point Latitude The Census Bureau calculates an internal point (latitude and longitude coordinates) for each
geographic entity. For many geographic entities, the internal point is at or near the geographic center of the entity.
For some irregularly shaped entities (such as those shaped like a crescent), the calculated geographic center may
be located outside the boundaries of the entity. In such instances, the internal point is identified as a point inside
the entity boundaries nearest to the calculated geographic center and, if possible, within a land polygon.

Internal Point Longitude The Census Bureau calculates an internal point (latitude and longitude coordinates) for
each geographic entity. For many geographic entities, the internal point is at or near the geographic center of
the entity. For some irregularly shaped entities (such as those shaped like a crescent), the calculated geographic
center may be located outside the boundaries of the entity. In such instances, the internal point is identified as
a point inside the entity boundaries nearest to the calculated geographic center and, if possible, within a land
polygon.

Forward Geocoding Also known as geocoding, a process that identifies a specific canonical location based on its
street address.

Geocoding The act of determining a specific, canonical location based on some input data.

See also:

• Forward Geocoding

• Reverse Geocoding

Geography A geographical area. Corresponds to a layer and represented in the Census Geocoder as a
GeographicArea.

Layer When working with the Census Geocoder API (particularly when getting geographic area data), you have the
ability to control which types of geographic area get returned. These types of geographic area are called “layers”.
Which layers are available is ultimately determined by the vintage of the data you are retrieving.

See also:

• Geographies in the Census Geocoder > Benchmarks, Vintages, and Layers

111

https://geocoding.geo.census.gov/geocoder/
https://geocoding.geo.census.gov/geocoder/
https://geocoding.geo.census.gov/geocoder/

Census Geocoder, Release 0.1.0

One-line Address A physical / mailing address represented in a single line of text, like '4600 Silver Hill Rd,
Washington, DC 20233'.

Parametrized Address An address that has been broken down into its component parts. Thus, a single-line address
like '4600 Silver Hill Rd, Washington, DC 20233' gets broken down into:

• STREET: '4600 Silver Hill Rd'

• CITY: 'Washington'

• STATE: 'DC'

• ZIP CODE: '20233'

Reverse Geocoding A process that identifies a specific canonical location based on its precise geographic coordinates
(typically expressed as latitude and longitude).

Sampled Data Data reported by the US Census Bureau that is derived from data collected from a subset of the resident
population (i.e. from a surveyed sample of potential respondents).

Tigerline Tigerline and Shapefiles represent the GIS data that defines all of the features (places) and geographical
areas (polygons) that comprise the mapping data for the Census Geocoder API.

Vintage The census or survey data that the geographic area meta-data returned by the Census Geocoder API is linked
to, given that geographic area’s benchmark.

112 Chapter 9. Glossary

https://geocoding.geo.census.gov/geocoder/
https://geocoding.geo.census.gov/geocoder/

CHAPTER

TEN

SQLATHANOR LICENSE

MIT License

Copyright (c) 2021 Insight Industry Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

The US Census Geocoder is a Python library that provides Python bindings for the U.S. Census Geocoder API. It
enables you to use simple Python function calls to retrieve Python object representations of geographic meta-data for
the addresses or coordinates that you are searching for.

Warning: The US Census Geocoder is completely unofficial, and is in no way affiliated with the US Government
or the US Census Bureau. We strongly recommend that you do business with them directly as needed, and simply
provide this Python library as a facilitator for your programmatic interactions with the excellent services provided
by the US Census Bureau.

Contents

• US Census Geocoder

– Installation

∗ Dependencies

– Why the Census Geocoder?

∗ Key Census Geocoder Features

∗ The US Census Geocoder vs Alternatives

– Hello World and Basic Usage

113

https://geocoding.geo.census.gov/geocoder/

Census Geocoder, Release 0.1.0

∗ 1. Import the Census Geocoder

∗ 2. Execute a Coding Request

∗ 3. Work with the Results

– Questions and Issues

– Contributing

– Testing

– License

– Indices and tables

114 Chapter 10. SQLAthanor License

CHAPTER

ELEVEN

INSTALLATION

To install the US Census Geocoder, just execute:

$ pip install census-geocoder

11.1 Dependencies

• Validator-Collection v1.5.0 or higher

• Backoff-Utils v1.0.1 or higher

• Requests v2.26 or higher

115

https://github.com/insightindustry/validator-collection
https://github.com/insightindustry/backoff-utils
https://docs.python-requests.org/

Census Geocoder, Release 0.1.0

116 Chapter 11. Installation

CHAPTER

TWELVE

WHY THE CENSUS GEOCODER?

In fulfilling its constitutional and statutory obligations, the US Census Bureau provides extensive data about the United
States. They make this data available publicly through their website, through their raw data files, and through their
APIs. However, while their public APIs provide great data, they are limited in both tooling and documentation. So to
help with that, we’ve created the US Census Geocoder library.

The Census Geocoder library is designed to provide a Pythonic interface for interacting with the Census Bureau’s
Geocoder API. It is specifically designed to eliminate the scaffolding needed to query the API directly, and provides
for simpler and cleaner function calls to return forward geocoding and reverse geocoding information. Furthermore, it
exposes Python object representations of the outputs returned by the API making it easy to work with the API’s data
in your applications.

12.1 Key Census Geocoder Features

• Easy to adopt. Just install and import the library, and you can be forward geocoding and reverse geocoding with
just two lines of code.

• Extensive documentation. One of the main limitations of the Geocoder API is that its documentation is scattered
across the different datasets released by the Census Bureau, making it hard to navigate and understand. We’ve
tried to fix that.

• Location Search

– Using Geographic Coordinates (reverse geocoding)

– Using a One-line Address

– Using a Parametrized Address

– Using Batched Addresses

• Geography Search

– Using Geographic Coordinates (reverse geocoding)

– Using a One-line Address

– Using a Parametrized Address

– Using Batched Addresses

• Supports all available benchmarks, vintages, and layers.

• Simplified syntax for indicating benchmarks, vintages, and layers.

• No more hard to interpret field names. The library uses simplified (read: human understandable) names for
location and geography properties.

117

https://geocoding.geo.census.gov/geocoder/

Census Geocoder, Release 0.1.0

12.2 The US Census Geocoder vs Alternatives

While we’re partial to the US Census Geocoder as our primary means of interacting with the Census Geocoder API,
there are obviously alternatives for you to consider. Some might be better for your use specific use cases, so here’s how
we think about them:

Roll Your Own

Census Geocode

CensusBatchGeocoder

geocoder/geopy

The Census Geocoder API is a straightforward RESTful API. Which means that you can just execute your own HTTP
requests against it, retrieve the JSON results, and work with the resulting data entirely yourself. This is what I did for
years, until I got tired of repeating the same patterns over and over again, and decided to build the Census Geocoder
instead.

For a super-simple use case, probably the most expedient way to do it. But of course, more robust use cases would
require your own scaffolding with built-in retry-logic, object representation, error handling, etc. which becomes non-
trivial.

Why not use a library with batteries included?

Tip: When to use it?

In practice, I find that rolling my own solution is great when it’s an extremely simple use case, or a one-time operation
(e.g. in a Jupyter Notebook) with no business logic to speak of. It’s a “quick-and-dirty” solution, where I’m trading
rapid implementation (yay!) for less flexibility/functionality (boo!).

Considering how easy the Census Geocoder is to use, however, I find that I never really roll my own scaffolding when
working with the Census Geocoder API.

The Census Geocode library is fantastic, and it was what I had used before building the Census Geocoder library.
However, it has a number of significant limitations when compared to the US Census Geocoder:

• Results are returned as-is from the Census Geocoder API. This means that:

– Results are essentially JSON objects represented as dict, which makes interacting with them in Python a
little more cumbersome (one has to navigate nested dict objects).

– Property/field names are as in the original Census data. This means that if you do not have the documen-
tation handy, it is hard to intuitively understand what the data represents.

• The library is licensed under GPL3, which may complicate or limit its utilization in commercial or closed-source
software operating under different (non-GPL) licenses.

• The library requires you to remember / apply a lot of the internals of the Census Geocoder API as-is (e.g. bench-
mark vintages) which is complicated given the API’s limited documentation.

• The library does not support custom layers, and only returns the default set of layers for any request.

The Census Geocoder explicitly addresses all of these concerns:

• The library uses native Python classes to represent results, providing a more pythonic syntax for interacting with
those classes.

• Properties / fields have been renamed to more human-understandable names.

• The Census Geocoder is made available under the more flexible MIT License.

118 Chapter 12. Why the Census Geocoder?

https://geocoding.geo.census.gov/geocoder/
https://geocoding.geo.census.gov/geocoder/
https://geocoding.geo.census.gov/geocoder/
https://pypi.org/project/censusgeocode/
https://geocoding.geo.census.gov/geocoder/
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict
https://www.gnu.org/licenses/gpl-3.0.html
https://geocoding.geo.census.gov/geocoder/

Census Geocoder, Release 0.1.0

• The library streamlines the configuration of benchmarks and vintages, and provides extensive documentation.

• The library supports any and all layers supported by the Census Geocoder API.

Tip: When to use it?

Census Geocode has one advantage over the US Census Geocoder: It has a CLI.

I haven’t found much use for a CLI in the work I’ve done with the Census Geocoder API, so have not implemented it
in the US Census Geocoder. Might add it in the future, if there are enough feature requests for it.

Given the above, it may be worth using Census Geocode instead of the Census Geocoder if you expect to be using a
CLI.

The CensusBatchGeocoder is a fantastic library produced by the team at the Los Angeles Times Data Desk. It is
specifically designed to provide a fairly pythonic interface for doing bulk geocoding operations, with great pandas
serialization / de-serialization support.

However, it does have a couple of limitations:

• Stale / Unmaintained? The library does not seem to have been updated since 2017, leading me to believe that it
is stale and unmaintained. There are numerous open issues dating back to 2020, 2018, and 2017 that have seen
no activity.

• No benchmark/vintage/layer support. The library does not support the configuration of benchmarks, vintages,
or layers.

• Limited error handling. The library has somewhat limited error handling, judging by the issues that have been
reported in the repository.

• Optimized for bulk operations. The design of the library has been optimized for geocoding in bulk, which
makes transactional one-off requests cumbersome to execute.

The Census Geocoder is obviously fresh / maintained, and has explicitly implemented robust error handling, and
support for benchmarks, vintages, and layers. It is also designed to support bulk operations and transactional one-off
requests.

Tip: When to use it?

CensusBatchGeocoder has one advantage over the US Census Geocoder: It can serialize results to a pandas
DataFrame seamlessly and simply.

This is a useful feature, and one that I have added/pinned for the US Census Geocoder. If there are enough requests /
up-votes on the issue, I may extend the library with this support in the future.

Given all this, it may be worth using CensusBatchGeocoder instead of the US Census Geocoder if you expect to be
doing a lot of bulk operations using the default benchmark/vintage/layers.

geocoder and geopy are two of my favorite geocoding libraries in the Python ecosystem. They are both inherently
pythonic, elegant, easy to use, and support most of the major geocoding providers out there with a standardized /
unified API.

So at first blush, one might think: Why not just use one of these great libraries to handle requests against the Census
Geocoder API?

Well, the problem is that neither geocoder nor geopy supports the Census Geocoder API as a geocoding provider.
So. . . you can’t just use either of them if you specifically want US Census geocoding data.

Secondly, both the geocoder and geopy libraries are optimized around providing coordinates and feature information
(e.g. matched address), which the Census Geocoder API results go beyond (and are not natively compatible with).

12.2. The US Census Geocoder vs Alternatives 119

https://geocoding.geo.census.gov/geocoder/
https://pypi.org/project/censusgeocode/
https://geocoding.geo.census.gov/geocoder/
https://github.com/insightindustry/census-geocoder/issues/1
https://pypi.org/project/censusgeocode/
https://github.com/datadesk/python-censusbatchgeocoder
https://pandas.pydata.org/
https://github.com/datadesk/python-censusbatchgeocoder/issues
https://github.com/datadesk/python-censusbatchgeocoder
https://pandas.pydata.org/
https://github.com/insightindustry/census-geocoder/issues/2
https://github.com/datadesk/python-censusbatchgeocoder
https://geocoder.readthedocs.io/
https://geopy.readthedocs.io/en/latest/
https://geocoding.geo.census.gov/geocoder/
https://geocoding.geo.census.gov/geocoder/
https://geocoder.readthedocs.io/
https://geopy.readthedocs.io/en/latest/
https://geocoding.geo.census.gov/geocoder/
https://geocoder.readthedocs.io/
https://geopy.readthedocs.io/en/latest/
https://geocoding.geo.census.gov/geocoder/

Census Geocoder, Release 0.1.0

So really, if you want to interact with the Census Geocoder API, the Census Geocoder library is designed to do exactly
that.

Tip: When to use them?

If you only need relatively simple, coordinate/feature-focused forward or reverse geocoding from a different provider
than the US Census Bureau, and you specifically do not need data from the US Census Bureau.

120 Chapter 12. Why the Census Geocoder?

https://geocoding.geo.census.gov/geocoder/

CHAPTER

THIRTEEN

HELLO WORLD AND BASIC USAGE

13.1 1. Import the Census Geocoder

import census_geocoder as geocoder

13.2 2. Execute a Coding Request

13.2.1 Using a One-line Address

location = geocoder.location.from_address('4600 Silver Hill Rd, Washington, DC 20233')

geography = geocoder.geography.from_address('4600 Silver Hill Rd, Washington, DC 20233')

13.2.2 Using a Parametrized Address

location = geocoder.location.from_address(street_1 = '4600 Silver Hill Rd',
city = 'Washington',
state = 'DC',
zip_code = '20233')

geography = geocoder.geography.from_address(street_1 = '4600 Silver Hill Rd',
city = 'Washington',
state = 'DC',
zip_code = '20233')

13.2.3 Using Batched Addresses

Via a CSV File
location = geocoder.location.from_batch('my-batched-address-file.csv')

geography = geocoder.geography.from_batch('my-batched-address-file.csv')

121

Census Geocoder, Release 0.1.0

13.2.4 Using Coordinates

location = geocoder.location.from_coordinates(latitude = 38.845985,
longitude = -76.92744)

geography = geocoder.geography.from_coordinates(latitude = 38.845985,
longitude = -76.92744)

13.3 3. Work with the Results

13.3.1 Work with Python Objects

location.matched_addresses[0].address

>> 4600 SILVER HILL RD, WASHINGTON, DC 20233

122 Chapter 13. Hello World and Basic Usage

CHAPTER

FOURTEEN

QUESTIONS AND ISSUES

You can ask questions and report issues on the project’s Github Issues Page

123

https://github.com/insightindustry/census-geocoder/issues

Census Geocoder, Release 0.1.0

124 Chapter 14. Questions and Issues

CHAPTER

FIFTEEN

CONTRIBUTING

We welcome contributions and pull requests! For more information, please see the Contributor Guide. And thanks to
all those who’ve already contributed:

• Chris Modzelewski (@insightindustry)

125

https://github.com/insightindustry/

Census Geocoder, Release 0.1.0

126 Chapter 15. Contributing

CHAPTER

SIXTEEN

TESTING

We use TravisCI for our build automation and ReadTheDocs for our documentation.

Detailed information about our test suite and how to run tests locally can be found in our Testing Reference.

127

http://travisci.org
https://readthedocs.org

Census Geocoder, Release 0.1.0

128 Chapter 16. Testing

CHAPTER

SEVENTEEN

LICENSE

The Census Geocoder is made available under an MIT License.

129

Census Geocoder, Release 0.1.0

130 Chapter 17. License

CHAPTER

EIGHTEEN

INDICES AND TABLES

• genindex

• modindex

• search

131

Census Geocoder, Release 0.1.0

132 Chapter 18. Indices and tables

PYTHON MODULE INDEX

c
census_geocoder.errors, 95
census_geocoder.geographies, 67
census_geocoder.locations, 58
census_geocoder.metaclasses, 88

t
tests, 105

133

Census Geocoder, Release 0.1.0

134 Python Module Index

INDEX

A
address (MatchedAddress property), 65
AIJUA (class in census_geocoder.geographies), 87
american_indian_joint_use_areas (Geography-

Collection property), 68
ANRC (class in census_geocoder.geographies), 86
anrc (GeographyCollection property), 68
ANVSA (class in census_geocoder.geographies), 87
anvsa (GeographyCollection property), 68

B
BaseEntity (class in census_geocoder.metaclasses), 88
basename (GeographicArea property), 77
BatchSizeTooLargeError (class in cen-

sus_geocoder.errors), 97
Benchmark, 111
benchmark (Location property), 63
benchmark_description (Location property), 63
benchmark_id (Location property), 63
benchmark_is_default (Location property), 63
benchmark_name (Location property), 63
block (GeographicArea property), 77
block (MatchedAddress property), 65
block_group (GeographicArea property), 77
block_groups (GeographyCollection property), 68
blocks (GeographyCollection property), 68
blocks_2020 (GeographyCollection property), 68
built-in function

inspect(), 31
to_dict(), 31
to_json(), 31

C
cbsa (GeographicArea property), 78
cbsa_pci (GeographicArea property), 78
Census Block, 111
Census Data, 111
census_geocoder.errors

module, 95
census_geocoder.geographies

module, 67
census_geocoder.locations

module, 58
census_geocoder.metaclasses

module, 88
CensusAPIError (class in census_geocoder.errors), 96
CensusBlock (class in census_geocoder.geographies),

81
CensusBlock_2020 (class in cen-

sus_geocoder.geographies), 81
CensusBlockGroup (class in cen-

sus_geocoder.geographies), 82
CensusDesignatedPlace (class in cen-

sus_geocoder.geographies), 84
CensusDivision (class in cen-

sus_geocoder.geographies), 84
CensusGeocoderError (class in cen-

sus_geocoder.errors), 96
CensusGeocoderWarning (class in cen-

sus_geocoder.errors), 97
CensusRegion (class in census_geocoder.geographies),

85
CensusTract (class in census_geocoder.geographies),

82
Centroid Latitude, 111
Centroid Longitude, 111
city (MatchedAddress property), 65
combined_nectas (GeographyCollection property), 68
CombinedNECTA (class in census_geocoder.geographies),

88
CombinedStatisticalArea (class in cen-

sus_geocoder.geographies), 84
ConfigurationError (class in cen-

sus_geocoder.errors), 96
congressional_districts_111 (GeographyCollec-

tion property), 68
congressional_districts_113 (GeographyCollec-

tion property), 68
congressional_districts_115 (GeographyCollec-

tion property), 69
congressional_districts_116 (GeographyCollec-

tion property), 69
congressional_session_code (GeographicArea

property), 78

135

Census Geocoder, Release 0.1.0

CongressionalDistrict (class in cen-
sus_geocoder.geographies), 85

CongressionalDistrict_111 (class in cen-
sus_geocoder.geographies), 85

CongressionalDistrict_113 (class in cen-
sus_geocoder.geographies), 85

CongressionalDistrict_115 (class in cen-
sus_geocoder.geographies), 85

CongressionalDistrict_116 (class in cen-
sus_geocoder.geographies), 85

consolidated_cities (GeographyCollection prop-
erty), 69

ConsolidatedCity (class in cen-
sus_geocoder.geographies), 86

counties (GeographyCollection property), 69
County (class in census_geocoder.geographies), 82
county_cc (GeographicArea property), 78
county_fips_code (GeographicArea property), 78
county_fips_code (MatchedAddress property), 65
county_ns (GeographicArea property), 78
county_subdivisions (GeographyCollection prop-

erty), 69
CountySubDivision (class in cen-

sus_geocoder.geographies), 82
csa (GeographicArea property), 78
csa (GeographyCollection property), 69

D
division_fips_code (GeographicArea property), 78
Divisions (built-in variable), 53
divisions (GeographyCollection property), 69

E
elementary_school_districts (GeographyCollec-

tion property), 69
ElementarySchoolDistrict (class in cen-

sus_geocoder.geographies), 83
entity_type (BaseEntity property), 89
entity_type (GeographicArea property), 78
entity_type (GeographicEntity property), 94
entity_type (GeographyCollection property), 69
entity_type (Location property), 63
entity_type (MatchedAddress property), 65
Estate (class in census_geocoder.geographies), 85
estates (GeographyCollection property), 69

F
federal_american_indian_reservations (Geogra-

phyCollection property), 69
FederalAmericanIndianReservation (class in cen-

sus_geocoder.geographies), 86
Forward Geocoding, 111
from_address (MatchedAddress property), 66

from_address() (GeographicArea class method), 73
from_address() (GeographicEntity class method), 90
from_address() (Location class method), 58
from_batch() (GeographicArea class method), 74
from_batch() (GeographicEntity class method), 91
from_batch() (Location class method), 60
from_coordinates() (GeographicArea class method),

75
from_coordinates() (GeographicEntity class method),

92
from_coordinates() (Location class method), 61
from_csv_record() (BaseEntity class method), 88
from_csv_record() (GeographicArea class method),

76
from_csv_record() (GeographicEntity class method),

93
from_csv_record() (GeographyCollection method), 67
from_csv_record() (Location class method), 62
from_csv_record() (MatchedAddress class method),

64
from_dict() (BaseEntity class method), 89
from_dict() (GeographicArea class method), 76
from_dict() (GeographicEntity class method), 93
from_dict() (GeographyCollection class method), 67
from_dict() (Location class method), 62
from_dict() (MatchedAddress class method), 64
from_json() (BaseEntity class method), 89
from_json() (GeographicArea class method), 77
from_json() (GeographicEntity class method), 93
from_json() (GeographyCollection class method), 67
from_json() (Location class method), 62
from_json() (MatchedAddress class method), 64
funcstat (GeographicArea property), 78
functional_status (GeographicArea property), 78

G
Geocoding, 111
GeographicArea (class in cen-

sus_geocoder.geographies), 73
GeographicEntity (class in cen-

sus_geocoder.metaclasses), 90
geographies (MatchedAddress property), 66
Geography, 111
geography_type (GeographicArea property), 79
GeographyCollection (class in cen-

sus_geocoder.geographies), 67
geoid (GeographicArea property), 79

H
hawaiian_home_lands (GeographyCollection prop-

erty), 69
HawaiianHomeLand (class in cen-

sus_geocoder.geographies), 87
high_school_grade (GeographicArea property), 79

136 Index

Census Geocoder, Release 0.1.0

I
incorporated_places (GeographyCollection prop-

erty), 69
IncorporatedPlace (class in cen-

sus_geocoder.geographies), 86
input_address (Location property), 63
input_city (Location property), 63
input_one_line (Location property), 63
input_state (Location property), 63
input_street (Location property), 63
input_zip_code (Location property), 64
inspect()

built-in function, 31
inspect() (GeographicArea method), 77
inspect() (GeographicEntity method), 94
inspect() (Location method), 62
inspect() (MatchedAddress method), 65
Internal Point Latitude, 111
Internal Point Longitude, 111
is_principal_city (GeographicArea property), 79

L
land_area (GeographicArea property), 79
latitude (GeographicArea property), 79
latitude (MatchedAddress property), 66
latitude_internal_point (GeographicArea prop-

erty), 79
Layer, 111
legal_statistical_area (GeographicArea property),

79
legislative_session_year (GeographicArea prop-

erty), 79
Location (class in census_geocoder.locations), 58
longitude (GeographicArea property), 79
longitude (MatchedAddress property), 66
longitude_internal_point (GeographicArea prop-

erty), 79
low_school_grade (GeographicArea property), 79
lsad (GeographicArea property), 80
lsad_category (GeographicArea property), 80

M
MalformedBatchFileError (class in cen-

sus_geocoder.errors), 96
matched_addresses (Location property), 64
MatchedAddress (class in census_geocoder.locations),

64
metropolitan_divisions (GeographyCollection

property), 70
MetropolitanDivision (class in cen-

sus_geocoder.geographies), 84
MetropolitanNECTA (class in cen-

sus_geocoder.geographies), 88

MetropolitanStatisticalArea (class in cen-
sus_geocoder.geographies), 85

metrpolitan_nectas (GeographyCollection property),
70

micropolitan_nectas (GeographyCollection prop-
erty), 70

MicropolitanNECTA (class in cen-
sus_geocoder.geographies), 88

MicropolitanStatisticalArea (class in cen-
sus_geocoder.geographies), 85

module
census_geocoder.errors, 95
census_geocoder.geographies, 67
census_geocoder.locations, 58
census_geocoder.metaclasses, 88
tests, 105

msa (GeographyCollection property), 70

N
name (GeographicArea property), 80
National (built-in variable), 53
necta_divisions (GeographyCollection property), 70
necta_pci (GeographicArea property), 80
NECTADivision (class in census_geocoder.geographies),

88
NoAddressError (class in census_geocoder.errors), 97
NoFileProvidedError (class in cen-

sus_geocoder.errors), 97

O
object_id (GeographicArea property), 80
off_reservation_trust_lands (GeographyCollec-

tion property), 70
OffReservationTrustLand (class in cen-

sus_geocoder.geographies), 86
oid (GeographicArea property), 80
One-line Address, 112
OTSA (class in census_geocoder.geographies), 87
otsa (GeographyCollection property), 70

P
Parametrized Address, 112
place (GeographicArea property), 80
place_cc (GeographicArea property), 80
place_ns (GeographicArea property), 80
pre_direction (MatchedAddress property), 66
pre_qualifier (MatchedAddress property), 66
pre_type (MatchedAddress property), 66
PUMA (class in census_geocoder.geographies), 82
PUMA_2010 (class in census_geocoder.geographies), 82
pumas (GeographyCollection property), 70
pumas_2010 (GeographyCollection property), 70
Python Enhancement Proposals

Index 137

Census Geocoder, Release 0.1.0

PEP 257, 103
PEP 8, 99

R
region_fips_code (GeographicArea property), 80
Regions (built-in variable), 53
regions (GeographyCollection property), 70
Reverse Geocoding, 112

S
Sampled Data, 112
school_district_type (GeographicArea property),

81
SDTSA (class in census_geocoder.geographies), 87
sdtsa (GeographyCollection property), 70
secondary_school_districts (GeographyCollection

property), 70
SecondarySchoolDistrict (class in cen-

sus_geocoder.geographies), 83
State (class in census_geocoder.geographies), 82
state (MatchedAddress property), 66
state_abbreviation (GeographicArea property), 81
state_american_indian_reservations (Geogra-

phyCollection property), 70
state_fips_code (GeographicArea property), 81
state_fips_code (MatchedAddress property), 66
state_legislative_districts_lower (Geography-

Collection property), 70
state_legislative_districts_lower_2010 (Geog-

raphyCollection property), 71
state_legislative_districts_lower_2012 (Geog-

raphyCollection property), 71
state_legislative_districts_lower_2016 (Geog-

raphyCollection property), 71
state_legislative_districts_lower_2018 (Geog-

raphyCollection property), 71
state_legislative_districts_upper (Geography-

Collection property), 71
state_legislative_districts_upper_2010 (Geog-

raphyCollection property), 71
state_legislative_districts_upper_2012 (Geog-

raphyCollection property), 71
state_legislative_districts_upper_2016 (Geog-

raphyCollection property), 71
state_legislative_districts_upper_2018 (Geog-

raphyCollection property), 71
state_ns (GeographicArea property), 81
StateAmericanIndianReservation (class in cen-

sus_geocoder.geographies), 86
StateLegislativeDistrictLower (class in cen-

sus_geocoder.geographies), 83
StateLegislativeDistrictLower.StateLegislativeDistrictLower_2010

(class in census_geocoder.geographies), 83

StateLegislativeDistrictLower.StateLegislativeDistrictLower_2012
(class in census_geocoder.geographies), 83

StateLegislativeDistrictLower.StateLegislativeDistrictLower_2016
(class in census_geocoder.geographies), 83

StateLegislativeDistrictLower.StateLegislativeDistrictLower_2018
(class in census_geocoder.geographies), 83

StateLegislativeDistrictUpper (class in cen-
sus_geocoder.geographies), 83

StateLegislativeDistrictUpper.StateLegislativeDistrictUpper_2010
(class in census_geocoder.geographies), 83

StateLegislativeDistrictUpper.StateLegislativeDistrictUpper_2012
(class in census_geocoder.geographies), 83

StateLegislativeDistrictUpper.StateLegislativeDistrictUpper_2016
(class in census_geocoder.geographies), 83

StateLegislativeDistrictUpper.StateLegislativeDistrictUpper_2018
(class in census_geocoder.geographies), 83

States (built-in variable), 53
states (GeographyCollection property), 71
street (MatchedAddress property), 66
Subbarrio (class in census_geocoder.geographies), 86
subbarrios (GeographyCollection property), 71
suffix_direction (MatchedAddress property), 66
suffix_qualifier (MatchedAddress property), 66
suffix_type (MatchedAddress property), 66

T
TDSA (class in census_geocoder.geographies), 87
tdsa (GeographyCollection property), 71
tests

module, 105
Tigerline, 112
tigerline_id (MatchedAddress property), 67
tigerline_side (MatchedAddress property), 67
to_address (MatchedAddress property), 67
to_dict()

built-in function, 31
to_dict() (BaseEntity method), 89
to_dict() (GeographicArea method), 77
to_dict() (GeographicEntity method), 94
to_dict() (GeographyCollection method), 67
to_dict() (Location method), 62
to_dict() (MatchedAddress method), 65
to_json()

built-in function, 31
to_json() (BaseEntity method), 89
to_json() (GeographicArea method), 77
to_json() (GeographicEntity method), 94
to_json() (GeographyCollection method), 68
to_json() (Location method), 63
to_json() (MatchedAddress method), 65
tract (GeographicArea property), 81
tract (MatchedAddress property), 67
tracts (GeographyCollection property), 71

138 Index

Census Geocoder, Release 0.1.0

traffic_analysis_districts (GeographyCollection
property), 72

traffic_analysis_zones (GeographyCollection
property), 72

TrafficAnalysisDistrict (class in cen-
sus_geocoder.geographies), 88

TrafficAnalysisZone (class in cen-
sus_geocoder.geographies), 88

tribal_block_groups (GeographyCollection prop-
erty), 72

tribal_subdivisions (GeographyCollection prop-
erty), 72

tribal_tracts (GeographyCollection property), 72
TribalCensusBlockGroup (class in cen-

sus_geocoder.geographies), 82
TribalCensusTract (class in cen-

sus_geocoder.geographies), 82
TribalSubDivision (class in cen-

sus_geocoder.geographies), 84

U
unified_school_districts (GeographyCollection

property), 72
UnifiedSchoolDistrict (class in cen-

sus_geocoder.geographies), 83
UnrecognizedBenchmarkError (class in cen-

sus_geocoder.errors), 96
UnrecognizedVintageError (class in cen-

sus_geocoder.errors), 96
urban_clusters (GeographyCollection property), 72
urban_clusters_2010 (GeographyCollection prop-

erty), 72
urban_growth_areas (GeographyCollection property),

72
UrbanCluster (class in census_geocoder.geographies),

88
UrbanCluster_2010 (class in cen-

sus_geocoder.geographies), 88
UrbanGrowthArea (class in cen-

sus_geocoder.geographies), 88
urbanized_areas (GeographyCollection property), 72
urbanized_areas_2010 (GeographyCollection prop-

erty), 72
UrbanizedArea (class in census_geocoder.geographies),

88
UrbanizedArea_2010 (class in cen-

sus_geocoder.geographies), 88

V
Vintage, 112
vintage (Location property), 64
vintage_description (Location property), 64
vintage_id (Location property), 64
vintage_is_default (Location property), 64

vintage_name (Location property), 64
voting_districts (GeographyCollection property), 72
VotingDistrict (class in cen-

sus_geocoder.geographies), 84

W
water_area (GeographicArea property), 81

Z
ZCTA5 (class in census_geocoder.geographies), 83
zcta5 (GeographicArea property), 81
zcta5 (GeographyCollection property), 72
zcta5_cc (GeographicArea property), 81
ZCTA_2010 (class in census_geocoder.geographies), 83
zcta_2010 (GeographyCollection property), 72
ZCTA_2020 (class in census_geocoder.geographies), 83
zcta_2020 (GeographyCollection property), 73
zip_code (MatchedAddress property), 67

Index 139

	Quickstart: Patterns and Best Practices
	Installation
	Importing the Library
	Getting Location Data
	Getting Geographical Area Data

	Using the US Census Geocoder
	Introduction
	What is Geocoding?
	Why the Census Geocoder?
	Census Geocoder vs. Alternatives

	Census Geocoder Features
	Overview
	How the Census Geocoder Works

	1. Installing the Census Geocoder
	Dependencies

	2. Import the Census Geocoder
	3. Geocoding
	Getting Location Data
	Getting Geographic Area Data
	Benchmarks and Vintages
	Layers

	4. Working with Results
	Shared Methods
	Location Data
	Geographical Area Data

	Geographies in the Census Geocoder
	Introduction
	Benchmarks, Vintages, and Layers
	Benchmarks and Vintages
	Layers

	Census Geographic Hierarchies Explained
	Core Hierarchy
	Secondary Hierarchies
	Places

	AIANHH Hierarchy

	API Reference
	Locations
	Location
	MatchedAddress

	Geographies
	GeographyCollection
	GeographicArea
	Census Block and Related
	Census Block Group
	Tribal Census Block Group
	Census Tract
	Tribal Census Tract
	County and Related
	State
	PUMA and Related
	State Legislative District and Related
	ZCTA5 and Related
	School District-Related
	Voting District
	Metropolitan Division
	Combined Statistical Area
	Tribal Subdivision
	Census Designated Place
	Division
	Congressional District and Related
	Region
	Metropolitan Statistical Area
	Micropolitan Statistical Area
	Estate
	Subbarrio
	Consolidated City
	Incorporated Place
	Alaska Native Regional Corporation
	Federal American Indian Reservation
	Off-Reservation Trust Land
	State American Indian Reservation
	Hawaiian Home Land
	Alaska Native Village Statistical Area
	Oklahoma Tribal Statistical Areas
	State Designated Tribal Statistical Areas
	Tribal Designated Statistical Areas
	American Indian Joint-Use Areas
	CombinedNECTA and Related
	Urban-related Geographical Areas
	Traffic Analysis Zone and Related

	Census Geocoder Internals
	Base Entity
	Geographic Entity

	Error Reference
	Handling Errors
	Stack Traces

	Census Geocoder Errors
	CensusGeocoderError (from ValueError)
	CensusAPIError (from CensusGeocoderError)
	ConfigurationError (from CensusGeocoderError)
	UnrecognizedBenchmarkError (from ConfigurationError)
	UnrecognizedVintageError (from ConfigurationError)
	MalformedBatchFileError (from ConfigurationError)
	NoAddressError (from ConfigurationError)
	NoFileProvidedError (from ConfigurationError)
	BatchSizeTooLargeError (from ConfigurationError)

	Census Geocoder Warnings
	CensusGeocoderWarning (from UserWarning)

	Contributing to the Census Geocoder
	Design Philosophy
	Style Guide
	Basic Conventions
	Naming Conventions
	Design Conventions
	Documentation Conventions
	Sphinx
	Docstrings

	Dependencies
	Preparing Your Development Environment
	Ideas and Feature Requests
	Testing
	Submitting Pull Requests
	Building Documentation
	Contributors
	References

	Testing the Census Geocoder
	Testing Philosophy
	Test Organization
	Configuring & Running Tests
	Installing with the Test Suite
	Command-line Options
	Running Tests

	Skipping Tests
	Incremental Tests

	Release History
	Release 0.1.0

	Glossary
	SQLAthanor License
	Installation
	Dependencies

	Why the Census Geocoder?
	Key Census Geocoder Features
	The US Census Geocoder vs Alternatives

	Hello World and Basic Usage
	1. Import the Census Geocoder
	2. Execute a Coding Request
	Using a One-line Address
	Using a Parametrized Address
	Using Batched Addresses
	Using Coordinates

	3. Work with the Results
	Work with Python Objects

	Questions and Issues
	Contributing
	Testing
	License
	Indices and tables
	Python Module Index
	Index

